|
| 1 | +# https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow |
| 2 | +# https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow |
| 3 | +from __future__ import print_function, division |
| 4 | +from future.utils import iteritems |
| 5 | +from builtins import range, input |
| 6 | +# Note: you may need to update your version of future |
| 7 | +# sudo pip install -U future |
| 8 | + |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +from sklearn.decomposition import PCA |
| 12 | +# from sklearn.naive_bayes import GaussianNB # doesn't have smoothing |
| 13 | +from scipy.stats import norm |
| 14 | +from scipy.stats import multivariate_normal as mvn |
| 15 | +from util import getKaggleMNIST |
| 16 | + |
| 17 | + |
| 18 | +class GaussianNB(object): |
| 19 | + def fit(self, X, Y, smoothing=1e-2): |
| 20 | + self.gaussians = dict() |
| 21 | + self.priors = dict() |
| 22 | + labels = set(Y) |
| 23 | + for c in labels: |
| 24 | + current_x = X[Y == c] |
| 25 | + self.gaussians[c] = { |
| 26 | + 'mean': current_x.mean(axis=0), |
| 27 | + 'var': current_x.var(axis=0) + smoothing, |
| 28 | + } |
| 29 | + self.priors[c] = float(len(Y[Y == c])) / len(Y) |
| 30 | + |
| 31 | + def score(self, X, Y): |
| 32 | + P = self.predict(X) |
| 33 | + return np.mean(P == Y) |
| 34 | + |
| 35 | + def predict(self, X): |
| 36 | + N, D = X.shape |
| 37 | + K = len(self.gaussians) |
| 38 | + P = np.zeros((N, K)) |
| 39 | + for c, g in iteritems(self.gaussians): |
| 40 | + mean, var = g['mean'], g['var'] |
| 41 | + P[:,c] = mvn.logpdf(X, mean=mean, cov=var) + np.log(self.priors[c]) |
| 42 | + return np.argmax(P, axis=1) |
| 43 | + |
| 44 | + |
| 45 | +# get data |
| 46 | +Xtrain, Ytrain, Xtest, Ytest = getKaggleMNIST() |
| 47 | + |
| 48 | +# try NB by itself |
| 49 | +model1 = GaussianNB() |
| 50 | +model1.fit(Xtrain, Ytrain) |
| 51 | +print("NB train score:", model1.score(Xtrain, Ytrain)) |
| 52 | +print("NB test score:", model1.score(Xtest, Ytest)) |
| 53 | + |
| 54 | +# try NB with PCA first |
| 55 | +pca = PCA(n_components=50) |
| 56 | +Ztrain = pca.fit_transform(Xtrain) |
| 57 | +Ztest = pca.transform(Xtest) |
| 58 | + |
| 59 | +model2 = GaussianNB() |
| 60 | +model2.fit(Ztrain, Ytrain) |
| 61 | +print("NB+PCA train score:", model2.score(Ztrain, Ytrain)) |
| 62 | +print("NB+PCA test score:", model2.score(Ztest, Ytest)) |
0 commit comments