-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_metrics.py
123 lines (92 loc) · 3.03 KB
/
custom_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
from sklearn import metrics
from scipy import stats
import warnings
def MSE_score(targets, preds, mask):
assert targets.shape == preds.shape, (targets.shape, mask.shape)
values = []
for i in range(len(targets)):
m = mask[i]
assert np.any(m), i
t = targets[i][m]
p = preds[i][m]
if t.size == 0:
values.append(0.0)
else:
values.append(np.sqrt(metrics.mean_squared_error(t, p)))
return np.array(values)
def NSE_score(targets, preds, mask):
assert targets.shape == preds.shape, (targets.shape, mask.shape)
values = []
for i in range(len(targets)):
m = mask[i]
t = targets[i][m]
p = preds[i][m]
if t.size == 0:
values.append(1)
else:
values.append(metrics.r2_score(t, p))
return np.array(values)
def pearson(targets, preds, mask):
assert targets.shape == preds.shape, (targets.shape, preds.shape)
values = []
valid = 0
for i in range(len(targets)):
m = mask[i]
t = targets[i][m]
p = preds[i][m]
if t.size == 0:
values.append(1)
else:
with warnings.catch_warnings(record=True) as caught_list:
v = stats.pearsonr(t, p)[0]
increment_valid = False
for c in caught_list:
if isinstance(c.message, stats.ConstantInputWarning):
v = 0
increment_valid = True
if increment_valid: valid += 1
values.append(float(v))
values = np.array(values)
# values = np.concatenate(values)
return values
def smape_score(targets, preds, mask):
# assert targets.ndim == preds.ndim == 2
assert targets.shape == preds.shape, (targets.shape, mask.shape)
values = []
for i in range(len(targets)):
m = mask[i]
t = targets[i][m]
p = preds[i][m]
if t.size == 0:
values.append(0)
else:
values.append(smape_helper(t, p))
return np.array(values)
def smape_helper(targets, preds):
nonzero = (targets !=0) & (preds !=0)
t = targets[nonzero]
p = preds[nonzero]
value = np.sum(np.abs(t - p) / (np.abs(t) + np.abs(p)))
return value / len(targets)
def CSI_score(targets, preds, mask, threshold=0.001):
assert targets.shape == preds.shape, (targets.shape, mask.shape)
values = []
y_true = targets > threshold
y_preds = preds > threshold
for i in range(len(targets)):
m = mask[i]
t = y_true[i][m]
p = y_preds[i][m]
if t.size == 0:
values.append(1)
else:
tp = t * p
fp = (~t) * p
fn = t * (~p)
tp = tp.sum()
fp = fp.sum()
fn = fn.sum()
csi = tp / (tp + fp + fn + 1e-8)
values.append(csi)
return np.array(values)