-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
158 lines (116 loc) · 5.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import argparse
import os
import time
from datetime import datetime
from tqdm import tqdm
import torch
import numpy as np
from torch import optim
import matplotlib.pyplot as plt
import pickle
from dataset import MyDataLoader, load_data
import custom_metrics as c_metrics
import model
import sys
sys.path.append('..')
from utils import Scaler
def do_compute(model, batch, device):
batch = batch.to(device)
l_preds, loss, valid_seq_ind = model(batch)
l_targets = batch.wdfp[:, 1:, 0] # Remove the first time step t = 0
return loss, (l_targets, l_preds), valid_seq_ind
def run_batch(model, optimizer, data_loader, epoch_i, desc, device):
total_loss = 0
label_list, pred_list, mask_list = [], [], []
for batch in tqdm(data_loader, desc= f'{desc} Epoch {epoch_i}'):
loss, (l_targets, l_preds), valid_seq_ind = do_compute(model, batch, device)
if model.training and isinstance(loss, torch.Tensor):
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += float(loss)
with torch.no_grad():
l_targets = l_targets.cpu().numpy().T
assert l_targets.ndim == 2
if not model.training and scaler is not None:
l_targets = scaler.inverse_transform(l_targets.reshape(-1, 1)).reshape(l_targets.shape)
l_preds = l_preds.cpu().numpy().T
assert l_preds.ndim == 2
if not model.training and scaler is not None:
l_preds = scaler.inverse_transform(l_preds.reshape(-1, 1)).reshape(l_preds.shape)
label_list.append(l_targets)
pred_list.append(l_preds)
mask = valid_seq_ind.cpu().numpy().T
assert np.any(mask)
mask_list.append(mask)
total_loss /= len(data_loader)
label_list = np.concatenate(label_list, axis=1)
pred_list = np.concatenate(pred_list, axis=1)
mask_list = np.concatenate(mask_list, axis=1)
mask_regr = mask_list & np.full_like(pred_list, fill_value=True).astype('bool')
mse = c_metrics.MSE_score(label_list, pred_list, mask_regr)
nse = c_metrics.NSE_score(label_list, pred_list, mask_regr)
smape = c_metrics.smape_score(label_list, pred_list, mask_regr)
r = c_metrics.pearson(label_list, pred_list, mask_list)
return total_loss, mse, nse, smape, r
def print_metrics(loss, mse, nse, smape, r):
print(f'loss: {loss:.4f}, mse: {mse:.4f}, nse: {nse:.4f}, smape: {smape:.4f}, pearson: {r:.4f}')
def train(train_data_loader, val_data_loader):
for epoch_i in range(1, args.n_epochs+1):
start = time.time()
model.train()
train_loss, train_mse, train_nse, train_smape, train_r = run_batch(model, optimizer, train_data_loader, epoch_i, 'train', args.device)
model.eval()
with torch.no_grad():
## Validation
if val_data_loader:
val_loss , val_mse, val_nse, val_smape, val_r = run_batch(model, optimizer, val_data_loader, epoch_i, 'val', args.device)
if train_data_loader:
print(f'\n#### Epoch {epoch_i} time {time.time() - start:.4f}s')
print('#### Training')
print_metrics(train_loss, train_mse.mean(), train_nse.mean(), train_smape.mean(), train_r.mean())
if val_data_loader:
print('#### Validation')
print_metrics(val_loss, val_mse.mean(), val_nse.mean(), val_smape.mean(), val_r.mean())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
data_source = '.'
parser.add_argument('--time_steps', type=int, default=8, help='Total number of time steps.')
parser.add_argument('--drop', type=float, default=0.3, help='Dropout probability.')
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--n_epochs', type=int, default=1000)
parser.add_argument('--lr', type=float, default=1e-3, help='Learing rate.')
parser.add_argument('--offset', type=int, default=0, help='Initial time step.')
parser.add_argument('--v_h_dim', type=int, default=16, help='Vector features - hidden dimensions.')
parser.add_argument('--s_h_dim', type=int, default=32, help='Scalar features - hidden dimensions.')
args = parser.parse_args()
args.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
args.time_stamp = f'{datetime.now()}'.replace(':', '_')
args.dataset = 'data'
train_dataset, val_dataset, test_dataset = load_data(args.dataset, args.time_steps, args.offset)
train_loader = MyDataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
valid_loader = MyDataLoader(val_dataset, batch_size=args.batch_size)
sample = train_dataset[0]
args.static_in_dims = sample.s_static.shape[-1]
s_in_dim = sample.rain.shape[-1] + sample.wdfp.shape[-1] + sample.x_v_norm.shape[-1] + sample.s_static.shape[-1]
v_in_dim = sample.x_v.shape[-2]
args.in_dims = (int(s_in_dim), int(v_in_dim))
model = model.FloodGNNGRU(args)
args.model_name = model.__class__.__name__
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
print(args.model_name)
scaler = None
if True:
try:
with open(f'{args.dataset}/wdfp_scaler.pckl', 'rb') as f:
scaler = pickle.load(f)
print(f"{type(scaler)} from {args.dataset}")
except FileNotFoundError:
print('Not using any scaler')
model.to(device=args.device)
print(f'Training on {args.device}.')
print(f'Starting at', args.time_stamp)
print(args)
print(f'Train on {len(train_dataset)}, Validating on {len(val_dataset)}')
train(train_loader, valid_loader)