-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathextract_phog.py
executable file
·136 lines (82 loc) · 4.03 KB
/
extract_phog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import sys
import os
import pickle
import numpy as np
'constants'
outputs_rel_path = 'outputs'
train_dir = os.path.join(outputs_rel_path, 'train')
test_dir = os.path.join(outputs_rel_path, 'test')
validation_dir = os.path.join(outputs_rel_path, 'validation')
if __name__ == '__main__':
'parse cmd input'
print(' # Script flags:', '<hog_cell_size_1>', '<hog_cell_size_2>', '<hog_cell_size_3>', '...')
'parse 1st arg'
if len(sys.argv) < 2:
print('\n + Usage:', sys.argv[0], '<hog_cell_size_1>', '<hog_cell_size_2>', '<hog_cell_size_3>', '...')
exit()
try:
hog_cell_sizes = [hog_cell_size for hog_cell_size in sys.argv[1:]]
except Exception as e:
print(e)
exit()
'Load TRAIN HOGs'
train_dif_hogs = []
for hog_cell_size in hog_cell_sizes:
with open(os.path.join(train_dir, 'train_hog_' + hog_cell_size + 'x' + hog_cell_size + '.pickle'), 'rb') as train:
train_dif_hogs.append(pickle.load(train))
train_phog_size = len(train_dif_hogs[0])
train_phog = []
for hog_enc_idx in range(train_phog_size):
' **** MERGE all different hog representations of EACH PATTERN **** '
PHOG_features = []
for train_dif_hog in train_dif_hogs:
PHOG_features += train_dif_hog[hog_enc_idx]['features'].tolist()
PHOG_enc = dict({'label': train_dif_hogs[0][hog_enc_idx]['label'], 'features': np.asarray(PHOG_features)})
train_phog.append(PHOG_enc)
# ' **** MERGE all different hog representations of EACH PATTERN **** '
# train_phog = [{'label': train_dif_hogs[0][hog_enc_idx]['label'], \
# 'phog': np.asarray([train_dif_hog[hog_enc_idx]['hog'] for train_dif_hog in train_dif_hogs], dtype=np.float32)} \
# for hog_enc_idx in range(len(train_dif_hogs[0]))]
'Load TEST HOGs'
test_dif_hogs = []
for hog_cell_size in hog_cell_sizes:
with open(os.path.join(test_dir, 'test_hog_' + hog_cell_size + 'x' + hog_cell_size + '.pickle'), 'rb') as test:
test_dif_hogs.append(pickle.load(test))
test_phog_size = len(test_dif_hogs[0])
test_phog = []
for hog_enc_idx in range(test_phog_size):
' **** MERGE all different hog representations of EACH PATTERN **** '
PHOG_features = []
for test_dif_hog in test_dif_hogs:
PHOG_features += test_dif_hog[hog_enc_idx]['features'].tolist()
PHOG_enc = dict({'label': test_dif_hogs[0][hog_enc_idx]['label'], 'features': np.asarray(PHOG_features)})
test_phog.append(PHOG_enc)
'Load VALIDATION HOGs'
validation_dif_hogs = []
for hog_cell_size in hog_cell_sizes:
with open(os.path.join(validation_dir, 'validation_hog_' + hog_cell_size + 'x' + hog_cell_size + '.pickle'), 'rb') as validation:
validation_dif_hogs.append(pickle.load(validation))
validation_phog_size = len(validation_dif_hogs[0])
validation_phog = []
for hog_enc_idx in range(validation_phog_size):
' **** MERGE all different hog representations of EACH PATTERN **** '
PHOG_features = []
for validation_dif_hog in validation_dif_hogs:
PHOG_features += validation_dif_hog[hog_enc_idx]['features'].tolist()
PHOG_enc = dict({'label': validation_dif_hogs[0][hog_enc_idx]['label'], 'features': np.asarray(PHOG_features)})
validation_phog.append(PHOG_enc)
' DUMP DATA '
print('\nDumping extracted data ...')
phog_cell_sizes_str = ''
for hog_cell_size in hog_cell_sizes:
phog_cell_sizes_str += hog_cell_size + '_'
phog_cell_sizes_str = phog_cell_sizes_str[:-1] # Removes last redundant '_' separator
with open(os.path.join(train_dir, 'train_phog_' + phog_cell_sizes_str + '.pickle'), 'wb') as train:
pickle.dump(train_phog, train, protocol=pickle.HIGHEST_PROTOCOL)
print('Data has been successfully dumped into', train.name)
with open(os.path.join(test_dir, 'test_phog_' + phog_cell_sizes_str + '.pickle'), 'wb') as test:
pickle.dump(test_phog, test, protocol=pickle.HIGHEST_PROTOCOL)
print('Data has been successfully dumped into', test.name)
with open(os.path.join(validation_dir, 'validation_phog_' + phog_cell_sizes_str + '.pickle'), 'wb') as validation:
pickle.dump(validation_phog, validation, protocol=pickle.HIGHEST_PROTOCOL)
print('Data has been successfully dumped into', validation.name)