-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathneural.py
66 lines (53 loc) · 1.91 KB
/
neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy
def convertManyToOne(Y):
newY = numpy.empty((0, 1))
for i in xrange(len(Y)):
for j in xrange(len(Y[i])):
if Y[i][j] == 1:
newY = numpy.vstack([newY, j])
break
return newY
import scipy.io as sio
X_scaled = sio.loadmat('X_scaled.mat')['X_scaled']
Y = sio.loadmat('Y.mat')['Y']
from pybrain.datasets import ClassificationDataSet
from pybrain.utilities import percentError
from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised.trainers import BackpropTrainer
from pybrain.structure.modules import SoftmaxLayer
from pybrain.tools.customxml.networkwriter import NetworkWriter
from pybrain.tools.customxml.networkreader import NetworkReader
from pybrain.utilities import percentError
num_inputs = len(X[0])
ds = ClassificationDataSet(num_inputs, 1 , nb_classes=num_emotions)
Y = convertManyToOne(Y)
for k in xrange(len(X)):
ds.addSample(X_scaled[k],Y[k])
ds._convertToOneOfMany()
tstdata, trndata = ds.splitWithProportion( 0.25 ) #25% test data
fnn = buildNetwork( trndata.indim, 50 , trndata.outdim, outclass=SoftmaxLayer )
trainer = BackpropTrainer( fnn, dataset=trndata, momentum=0.1, learningrate=0.01 , verbose=True, weightdecay=0.01)
NUM_EPOCHS = 20
for i in range(NUM_EPOCHS):
error = trainer.train()
print "Epoch: %d, Error: %7.4f" % (i, error)
#error calculation
total = true = 0.0
for x, y in trndata:
out = fnn.activate(x).argmax()
if out == y.argmax():
true+=1
#print str(out) + " " + str(y.argmax())
total+=1
res = true/total
print "Accuracy on training data %.2f percent\n" % (res*100.0)
#error calculation
total = true = 0.0
for x, y in tstdata:
out = fnn.activate(x).argmax()
if out == y.argmax():
true+=1
#print str(out) + " " + str(y.argmax())
total+=1
res = true/total
print "Accuracy on test data %.2f percent\n" % (res*100.0)