Skip to content

Latest commit

 

History

History
54 lines (39 loc) · 1.49 KB

File metadata and controls

54 lines (39 loc) · 1.49 KB
Title Description Subjects Tags CatalogContent
.bitwise_not()
Performs element-wise bitwise NOT operation on the input tensor, flipping each bit (0 to 1 and 1 to 0). Applicable to integer and boolean tensors.
AI
Data Science
AI
Data Types
Deep Learning
Functions
intro-to-py-torch-and-neural-networks
paths/data-science

In PyTorch, the .bitwise_not() function performs an element-wise bitwise NOT operation on the input tensor. This flips each bit of the tensor’s binary representation, turning 0 to 1 and 1 to 0. It works for integer tensors (signed or unsigned) and boolean tensors (where it acts as a logical NOT).

Syntax

torch.bitwise_not(input, *, out=None)

Parameters:

  • input: A tensor of integer or boolean dtype.
  • out (Optional): A tensor for storing the output result. Must have the same shape as the input tensor.

Return value:

The .bitwise_not() function returns a new tensor containing the result of applying the bitwise NOT operation to each element in the input tensor.

Example

The following example illustrates the usage of the .bitwise_not() function in PyTorch:

import torch

# Create a boolean tensor
tensor_in = torch.tensor([True, False, True])

# Apply bitwise NOT
result = torch.bitwise_not(tensor_in)

print(result)

The above code produces the following output:

tensor([False,  True, False])