Skip to content

Commit f78f985

Browse files
committed
Add Project 5 hints and equations
1 parent f91a09e commit f78f985

File tree

1 file changed

+13
-38
lines changed

1 file changed

+13
-38
lines changed

Project#05/README.md

+13-38
Original file line numberDiff line numberDiff line change
@@ -6,50 +6,27 @@ amplitudes as well as Fock-matrix elements and antisymmetrized, Dirac-notation t
66
(as opposed to the spatial-orbital basis used in the earlier [MP2 Project](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2304).
77
Thus, the transformation of the AO-basis integrals into the spatial-MO basis must also include their translation into the spin-orbital basis:
88

9-
```
10-
EQUATION
11-
\begin{eqnarray*}
12-
\langle p q | r s \rangle & \equiv & \int d{\mathbf r}_1 d{\mathbf r}_2 d\omega_1 d\omega_1 \phi_p({\mathbf r}_1)\sigma_p(\omega_1) \phi_q({\mathbf r}_2)\sigma_q(\omega_2) \frac{1}{{\mathbf r}_{12}} \phi_r({\mathbf r}_1)\sigma_r(\omega_1) \phi_s({\mathbf r}_2)\sigma_s(\omega_2) \\
13-
& \equiv & \int d{\mathbf r}_1 d{\mathbf r}_2 \phi_p({\mathbf r}_1) \phi_q({\mathbf r}_2) \frac{1}{{\mathbf r}_{12}} \phi_r({\mathbf r}_1) \phi_s({\mathbf r}_2) \int d\omega_1 d\omega_1 \sigma_p(\omega_1) \sigma_q(\omega_2) \sigma_r(\omega_1) \sigma_s(\omega_2) \\
14-
& \equiv & (p r | q s) \int d\omega_1 d\omega_1 \sigma_p(\omega_1) \sigma_q(\omega_2) \sigma_r(\omega_1) \sigma_s(\omega_2)
15-
\end{eqnarry*}
16-
```
17-
9+
<img src="./figures/spin-orbital-eri.png" height="100">
1810

1911
Thus, if you know the ordering of the orbitals (e.g. all occupied orbitals before virtual orbitals, perhaps alternating between alpha and beta spins), it is straightforward to carry out the integration over the spin components (the sigmas) in the above expression. Thus, each spatial-orbital MO-basis two-electron integral translates to 16 possible spin-orbital integrals, only four of which are non-zero.
2012

2113
Don't forget that you must also create the spin-orbital Fock matrix:
2214

23-
```
24-
EQUATION
25-
f_{pq} = h_{pq} + \sum_m^{\rm occ} \langle pm || qm \rangle
26-
```
15+
<img src="./figures/spin-orbital-fock.png" height="50">
2716

2817
Suggestion: For simplicity, store the two-electron integrals in a four-dimensional array. This will greatly facilitate debugging of the complicated CCSD equations.
2918

30-
* Hint: Sample spatial- to spin-orbital translation code.
19+
* [Hint 1](./hints/hint1.md): Sample spatial- to spin-orbital translation code.
3120

3221
## Step #2: Build the Initial-Guess Cluster Amplitudes
3322
For Hartree-Fock reference determinants, the most common initial guess for the cluster amplitudes are the Moller-Plesset first-order perturbed wave function:
34-
```
35-
EQUATION
36-
t_i^a = 0
37-
```
38-
39-
```
40-
EQUATION
41-
t_{ij}^{ab} = \frac{\langle ij || ab \rangle}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b}
4223

43-
```
24+
<img src="./figures/init-t-amps.png" height="85">
4425

4526
Note that if you have constructed the Fock matrix, two-electron integrals, and initial-guess amplitudes correctly at this point,
46-
you should be able to compute the MP2 correlation energy using the simple spin-orbital expression and get identical results to those from
47-
[Project #4] (https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2304):
27+
you should be able to compute the MP2 correlation energy using the simple spin-orbital expression and get identical results to those from [Project #4](./Project%2304):
4828

49-
```
50-
EQUATION
51-
E_{\rm MP2} = \frac{1}{4} \sum_{ijab} \langle ij||ab\rangle t_{ij}^{ab}
52-
```
29+
<img src="./figures/mp2-energy.png" height="85">
5330

5431
## Step #3: Calculate the CC Intermediates
5532
Use the spin-orbital Eqs. 3-13 from Stanton's paper to build the two-index (F) and four-index (W) intermediates, as well as the effective doubles (labelled with the Greek letter tau).
@@ -60,18 +37,16 @@ Use Eqs. 1 and 2 from Stanton's paper to compute the updated T<sub>1</sub> and T
6037
## Step #5: Check for Convergence and Iterate
6138
Calculate the current CC correlation energy:
6239

63-
```
64-
EQUATION
65-
E_{\rm CC} = \sum_{ia} f_{ia} t_i^a + \frac{1}{4} \sum_{ijab} \langle ij||ab\rangle t_{ij}^{ab} + \frac{1}{2} \sum_{ijab} \langle ij||ab\rangle t_i^a t_j^b
66-
```
40+
<img src="./figures/cc-correlation-energy.png" height="60">
41+
6742
Compare energies and cluster amplitudes (using RMS differences) between iterations to check for convergence to some specified cutoff.
6843
If convergence is reached, you're done; if not, return to Step #3 and continue.
6944

7045
## Test Cases
7146
The input structures, integrals, etc. for these examples are found in the
72-
[input directory](https://github.com/CrawfordGroup/ProgrammingProjects/tree/master/Project%2305/input).
47+
[input directory](./input).
7348

74-
* STO-3G Water | [output](https://github.com/CrawfordGroup/ProgrammingProjects/blob/master/Project%2305/output/h2o/STO-3G/output.txt)
75-
* DZ Water | [output](https://github.com/CrawfordGroup/ProgrammingProjects/blob/master/Project%2305/output/h2o/DZ/output.txt)
76-
* DZP Water | [output](https://github.com/CrawfordGroup/ProgrammingProjects/blob/master/Project%2305/output/h2o/DZP/output.txt)
77-
* STO-3G Methane | [output](https://github.com/CrawfordGroup/ProgrammingProjects/blob/master/Project%2305/output/ch4/STO-3G/output.txt)
49+
* STO-3G Water | [output](./output/h2o/STO-3G/output.txt)
50+
* DZ Water | [output](./output/h2o/DZ/output.txt)
51+
* DZP Water | [output](./output/h2o/DZP/output.txt)
52+
* STO-3G Methane | [output](./output/ch4/STO-3G/output.txt)

0 commit comments

Comments
 (0)