-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunique_paths.go
87 lines (69 loc) · 1.78 KB
/
unique_paths.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*
62. Unique Paths
Source: https://leetcode.com/problems/unique-paths/
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
*/
package uniquepaths
// recursion
/*
func uniquePaths(m int, n int) int {
if m == 1 || n == 1 {
return 1
}
return uniquePaths(m, n-1) + uniquePaths(m-1, n)
}
*/
// memory search
/*
func uniquePaths(m int, n int) int {
memo := make([][]int, m) // memo[i][j]存储(i+1)*(j+1)grid的路径数量
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
memo[i] = append(memo[i], -1)
}
}
return calcPaths(m, n, memo)
}
func calcPaths(m int, n int, memo [][]int) int {
if memo[m-1][n-1] != -1 {
return memo[m-1][n-1]
}
if m == 1 || n == 1 {
memo[m-1][n-1] = 1
return 1
}
res := calcPaths(m, n-1, memo) + calcPaths(m-1, n, memo)
memo[m-1][n-1] = res
return res
}
*/
func uniquePaths(m int, n int) int {
memo := make([][]int, m) // memo[i][j]存储(i+1)*(j+1)grid的路径数量
for i := 0; i < m; i++ {
memo[i] = append(memo[i], 1)
}
for i := 1; i < n; i++ {
memo[0] = append(memo[0], 1)
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
memo[i] = append(memo[i], memo[i-1][j]+memo[i][j-1])
}
}
return memo[m-1][n-1]
}