-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathunique_paths2.go
157 lines (132 loc) · 2.94 KB
/
unique_paths2.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
63. Unique Paths II
Source: https://leetcode.com/problems/unique-paths-ii/
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Note: m and n will be at most 100.
Example 1:
Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
*/
package uniquepaths2
// recursion
/*
func uniquePathsWithObstacles(obstacleGrid [][]int) int {
m := len(obstacleGrid)
n := len(obstacleGrid[0])
cur := 1
if m == 1 {
for i := 0; i < n; i++ {
if obstacleGrid[0][i] == 1 {
cur = 0
}
}
return cur
}
cur = 1
if n == 1 {
for i := 0; i < m; i++ {
if obstacleGrid[i][0] == 1 {
cur = 0
}
}
return cur
}
if obstacleGrid[m-1][n-1] == 1 {
return 0
}
obstacleGridCut := make([][]int, m)
for i := range obstacleGridCut {
for j := 0; j < n-1; j++ {
obstacleGridCut[i] = append(obstacleGridCut[i], obstacleGrid[i][j])
}
}
return uniquePathsWithObstacles(obstacleGrid[:m-1]) + uniquePathsWithObstacles(obstacleGridCut)
}
*/
// memory search
/*
func uniquePathsWithObstacles(obstacleGrid [][]int) int {
m := len(obstacleGrid)
n := len(obstacleGrid[0])
memo := make([][]int, m)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
memo[i] = append(memo[i], -1)
}
}
cur := 1
for i := 0; i < m; i++ {
if obstacleGrid[i][0] == 1 {
cur = 0
}
memo[i][0] = cur
}
cur = 1
for j := 0; j < n; j++ {
if obstacleGrid[0][j] == 1 {
cur = 0
}
memo[0][j] = cur
}
return calcUniquePaths(obstacleGrid, m-1, n-1, memo)
}
func calcUniquePaths(obstacleGrid [][]int, m int, n int, memo [][]int) int {
if memo[m][n] != -1 {
return memo[m][n]
}
if obstacleGrid[m][n] == 1 {
return 0
}
res := calcUniquePaths(obstacleGrid, m-1, n, memo) + calcUniquePaths(obstacleGrid, m, n-1, memo)
memo[m][n] = res
return res
}
*/
// dynamic programming
func uniquePathsWithObstacles(obstacleGrid [][]int) int {
m := len(obstacleGrid)
n := len(obstacleGrid[0])
memo := make([][]int, m)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
memo[i] = append(memo[i], -1)
}
}
cur := 1
for i := 0; i < m; i++ {
if obstacleGrid[i][0] == 1 {
cur = 0
}
memo[i][0] = cur
}
cur = 1
for j := 0; j < n; j++ {
if obstacleGrid[0][j] == 1 {
cur = 0
}
memo[0][j] = cur
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
if obstacleGrid[i][j] == 1 {
memo[i][j] = 0
} else {
memo[i][j] = memo[i-1][j] + memo[i][j-1]
}
}
}
return memo[m-1][n-1]
}