-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathCH8_morphology_image_processing.cpp
1343 lines (1164 loc) · 47.3 KB
/
CH8_morphology_image_processing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <opencv2/opencv.hpp>
#include <opencv2/core/types.hpp>
#include <opencv2/imgproc.hpp> //line
#include <opencv2/imgcodecs.hpp>
#include <opencv2/core/hal/interface.h> //CV_8UC3
#include <iostream>
#include <map>
#include <cmath> //M_PI
#include "CH8.h"
#define SHRINK
using namespace std;
//p.279
BinaryKernel full3Kernel("full3", vector<FB>(3*3, FB::F));
BinaryKernel full5Kernel("full5", vector<FB>(5*5, FB::F));
BinaryKernel full15Kernel("full15", vector<FB>(15*15, FB::F));
BinaryKernel crossKernel("cross",
{FB::X, FB::F, FB::X,
FB::F, FB::F, FB::F,
FB::X, FB::F, FB::X});
BinaryKernel square50Kernel("square50", vector<FB>(53*53, FB::B));
BinaryKernel convex1Kernel("convex1",
{FB::F, FB::X, FB::X,
FB::F, FB::B, FB::X,
FB::F, FB::X, FB::X});
BinaryKernel convex2Kernel("convex2",
{FB::F, FB::F, FB::F,
FB::X, FB::B, FB::X,
FB::X, FB::X, FB::X});
BinaryKernel convex3Kernel("convex3",
{FB::X, FB::X, FB::F,
FB::X, FB::B, FB::F,
FB::X, FB::X, FB::F});
BinaryKernel convex4Kernel("convex4",
{FB::X, FB::X, FB::X,
FB::X, FB::B, FB::X,
FB::F, FB::F, FB::F});
void initializeKernels(){
//p.279
for(int i = 1; i < 51; i++){
for(int j = 1; j < 51; j++){
square50Kernel.arr[i*53+j] = FB::F;
}
}
};
void Erode(cv::Mat& img, BinaryKernel& kernel){
//p.278
//input img should be binary, containing only 0 or 255!
int kernelHeight = kernel.kernelHeight;
int kernelWidth = kernel.kernelWidth;
int kernelMiddleY = kernel.kernelMiddleY;
int kernelMiddleX = kernel.kernelMiddleX;
vector<FB> arr = kernel.arr;
int height = img.rows, width = img.cols;
//initialize as all 255(white, meaning background)
cv::Mat target(cv::Size(width, height), CV_8UC1, cv::Scalar(255));
//y + kernelHeight - kernelMiddleY - 1: the y coordinate cooresponding to the bottom of kernel
for(int y = kernelMiddleY; (y + kernelHeight - kernelMiddleY - 1) < height; y++){
for(int x = kernelMiddleX; (x + kernelWidth - kernelMiddleX - 1) < width; x++){
//y and i moves along same coordinate, x and j moves along another
//0 is foreground, 255 is background
//current pixel on the image
//ignore background
//the center of kernel could be bg, don't skip at that case
if(arr[kernelMiddleY*kernelWidth+kernelMiddleX] != FB::B &&
(int)img.at<uchar>(y, x) == 255) continue;
bool match = true;
for(int i = 0; i < kernelHeight; i++){
for(int j = 0; j < kernelWidth; j++){
// cout << ((int)img.at<uchar>(y-kernelMiddleY+i, x-kernelMiddleX+j) == 0) << " " << (int)arr[i*kernelWidth+j] << " | ";
switch(arr[i*kernelWidth+j]){
case FB::X:
//we don't care
// continue;
break;
case FB::F:
//it must be foreground
if((int)img.at<uchar>(y-kernelMiddleY+i, x-kernelMiddleX+j) != 0){
match = false;
}
break;
case FB::B:
//it must be background
if((int)img.at<uchar>(y-kernelMiddleY+i, x-kernelMiddleX+j) != 255){
match = false;
}
break;
default:
cout << "invalid value in erode structure element!" << endl;
break;
}
//eary stopping
if(!match) break;
}
//eary stopping
if(!match) break;
}
// cout << endl;
if(match){
//set to foreground
// cout << "(" << y << ", " << x << ") matches" << endl;
target.at<uchar>(y, x) = 0;
}
// if(img.at<uchar>(y, x) != target.at<uchar>(y, x)){
// cout << "(" << y << ", " << x << ") ";
// }
}
}
img = target;
};
void Dilate(cv::Mat& img, BinaryKernel& kernel){
//p.283
//input img should be binary, containing only 0 or 255!
int kernelHeight = kernel.kernelHeight;
int kernelWidth = kernel.kernelWidth;
int kernelMiddleY = kernel.kernelMiddleY;
int kernelMiddleX = kernel.kernelMiddleX;
vector<FB> arr = kernel.arr;
/*
convert S to its reflection wrt its middle point
e.g.
[[0,1,1],
[1,0,1],
[0,0,0]]
is converted to:
[[0,0,0],
[1,0,1],
[1,1,0]]
*/
for(int i = 0; i <= kernelMiddleY; i++){
// for(int j = 0; j <= kernelWidth-1-i; j++){ //from textbook, incorrect!
for(int j = 0; j <= ((i == kernelMiddleY) ? kernelMiddleX : kernelWidth-1); j++){
// cout << "(" << i << ", " << j << ") with (" << (kernelHeight-1-i) << ", " << (kernelWidth-1-j) << ")" << endl;
arr[i*kernelWidth+j] = arr[(kernelHeight-1-i)*kernelWidth+(kernelWidth-1-j)];
}
}
int height = img.rows, width = img.cols;
//initialize as all 255(white, meaning background)
cv::Mat target(cv::Size(width, height), CV_8UC1, cv::Scalar(255));
for(int y = kernelMiddleY; (y + kernelHeight - kernelMiddleY - 1) < height; y++){
for(int x = kernelMiddleX; (x + kernelWidth - kernelMiddleX - 1) < width; x++){
//y and i moves along same coordinate, x and j moves along another
//0 is foreground, 255 is background
//current pixel on the image
//not ignore background here!
bool match = false;
for(int i = 0; i < kernelHeight; i++){
for(int j = 0; j < kernelWidth; j++){
switch(arr[i*kernelWidth+j]){
case FB::X:
//we don't care
continue;
case FB::F:
//if there is any foreground pixel in its neighborhood
if((int)img.at<uchar>(y-kernelMiddleY+i, x-kernelMiddleX+j) == 0){
//set to foreground
target.at<uchar>(y, x) = 0;
match = true;
}
break;
default:
cout << "invalid value in dilate structure element!" << endl;
break;
}
//eary stopping
if(match) break;
}
//eary stopping
if(match) break;
}
// if(img.at<uchar>(y, x) != target.at<uchar>(y, x)){
// cout << "(" << y << ", " << x << ") ";
// }
}
}
img = target;
};
void Open(cv::Mat& img, BinaryKernel& kernel){
//p.286
//input img should be binary, containing only 0 or 255!
Erode(img, kernel);
Dilate(img, kernel);
};
void Close(cv::Mat& img, BinaryKernel& kernel){
//p.288
//input img should be binary, containing only 0 or 255!
Dilate(img, kernel);
Erode(img, kernel);
};
void ExtractBoundary(cv::Mat& img, BinaryKernel& kernel){
//p.292
//input img should be binary, containing only 0 or 255!
cv::Mat eroded = img.clone();
Erode(eroded, kernel);
for(int row = 0; row < img.rows; row++){
for(int col = 0; col < img.cols; col++){
//if a pixel is original black, but eroded to white, then its boundary
//we set this kind of pixels to black(foreground)
img.at<uchar>(row, col) = (img.at<uchar>(row, col) == 0 && eroded.at<uchar>(row, col) == 255) ? 0 : 255;
}
}
};
void CleanConnRgn(cv::Mat& img, int startRow, int startCol, int nConn){
//from LabelConnRgn
int width = img.cols, height = img.rows;
BinaryKernel kernel = full3Kernel;
if(nConn == 4){
kernel = crossKernel;
}
//ignore foreground on boundary, set them to background first
for(int i = 0; i < height; i++){
img.at<uchar>(i, 0) = img.at<uchar>(i, width-1) = 255;
}
for(int j = 0; j < width; j++){
img.at<uchar>(0, j) = img.at<uchar>(height-1, j) = 255;
}
//cc for connected component
cv::Mat cc(cv::Size(width, height), CV_8UC1, cv::Scalar(255));
cv::Mat lastCC, diffCC;
cc.at<uchar>(startRow, startCol) = 0;
do{
lastCC = cc;
Dilate(cc, kernel); //assume "img" is 8-connected
//revise "revImg" from FillRgn to "img"
cv::bitwise_or(cc, img, cc);
cv::bitwise_xor(cc, lastCC, diffCC);
}while(cv::countNonZero(diffCC) > 0);
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
if((int)cc.at<uchar>(i, j) == 0){
//set the connected component to bg
img.at<uchar>(i, j) = 255;
}
}
}
};
void TraceBoundary(cv::Mat& img, vector<vector<vector<int>>>& boundaries, bool traceAll){
//p.293-295
//input img should be binary, containing only 0 or 255!
//support for trace boundaries for multiple objects already done
int width = img.cols, height = img.rows;
cv::Mat target(cv::Size(width, height), CV_8UC1, cv::Scalar(255));
//first is in top-down(y) direction
vector<vector<int>> dirs = {
//left-down, down, right-down, right, right-up, up, left-up, left
{1,-1}, {1,0}, {1,1}, {0,1}, {-1,0}, {-1,0}, {-1,-1}, {0,-1}
};
//ignore foreground on boundary, set them to background first
for(int i = 0; i < height; i++){
img.at<uchar>(i, 0) = img.at<uchar>(i, width-1) = 255;
}
for(int j = 0; j < width; j++){
img.at<uchar>(0, j) = img.at<uchar>(height-1, j) = 255;
}
vector<vector<bool>> visited(height, vector<bool>(width, false));
for(int row = 1; row < height-1; row++){ //need to look at its 3x3 neighborhood
for(int col = 1; col < width-1; col++){
//ignore background
if(img.at<uchar>(row, col) == 255) continue;
if(visited[row][col]) continue;
int startRow = row, startCol = col;
int curRow = row, curCol = col;
int curDir = 0;
vector<vector<int>> boundary;
boundary.push_back({curRow, curCol});
visited[curRow][curCol] = true;
// cout << "start: (" << curRow << ", " << curCol << ") ";
// cout << "start: (" << curRow << ", " << curCol << ") " << endl;
do{
int nextRow = curRow + dirs[curDir][0];
int nextCol = curCol + dirs[curDir][1];
int searchTimes = 1; //have tried one direction
//try to find a foreground pixel in its neighborhood in specific order
while(img.at<uchar>(nextRow, nextCol) == 255){
curDir = (curDir+1) % 8;
nextRow = curRow + dirs[curDir][0];
nextCol = curCol + dirs[curDir][1];
visited[nextRow][nextCol] = true;
if(++searchTimes == 8){
//current point's 8 neighbors are all background,
//so itself is an isolated point,
//don't do anything with isolated point
//?
nextRow = curRow;
nextCol = curCol;
break;
}
// cout << "try (" << nextRow << ", " << nextCol << ") " << endl;
}
//we've found the next boundary point
//(nextRow, nextCol) is either current point(if isolated) or the next point in the boundary
curRow = nextRow;
curCol = nextCol;
// cout << " (" << curRow << ", " << curCol << ") "; // << endl;
target.at<uchar>(curRow, curCol) = 0;
//building one boundary
boundary.push_back({curRow, curCol});
//turn clockwise 90 degrees
curDir = (curDir-2+8)%8;
}while((curRow != startRow) || (curCol != startCol)); //note the stop condition!
if(traceAll){
//need to clear its connected component after this finding!
CleanConnRgn(img, startRow, startCol, 4);
}else{
img = target;
return;
}
//also need to record the boundary into a vector
//one boundary for an object
boundaries.push_back(boundary);
// cout << endl;
}
}
img = target;
};
void FillRgn(cv::Mat& img, int seedRow, int seedCol, BinaryKernel& kernel){
//p.298
//fill region
//input img should be binary, containing only 0 or 255!
/*
kernel is cross if the img is 8-connected,
kernel is 3*3 square if the img is 4-connected
*/
int width = img.cols, height = img.rows;
cv::Mat target(cv::Size(width, height), CV_8UC1, cv::Scalar(255));
if(seedRow == -1 || seedCol == -1){
//center of the image
seedRow = height/2;
seedCol = width/2;
}
target.at<uchar>(seedRow, seedCol) = 0;
//the complement of img
cv::Mat revImg = img.clone();
for(int row = 0; row < height; row++){
for(int col = 0; col < width; col++){
revImg.at<uchar>(row, col) = 255 - (int)img.at<uchar>(row, col);
}
}
cv::Mat last, diff;
do{
last = target;
Dilate(target, kernel);
/*
0 in our case is foreground, 255 is background
we want (0, 0) -> 0 and (0, 255) -> 255 and (255, 255) -> 255
This can be written as !((!a) & (!b)), since our fg and bg are reverted
By De Morgan's law, it's equal to (a || b)
*/
cv::bitwise_or(target, revImg, target);
/*
check the difference of target and last result,
continue the loop if they are not equal
*/
cv::bitwise_xor(target, last, diff);
// cout << "change " << cv::countNonZero(diff) << " bits" << endl;
}while(cv::countNonZero(diff) > 0);
/*
do union
!(!a || !b) by De Morgan's law is (a & b)
(0,0) -> 0 and (0,255) -> 0 and (255,255)->255
*/
cv::bitwise_and(target, img, img);
};
void LabelConnRgn(cv::Mat& img, int nConn){
//p.303-304
//input img should be binary, containing only 0 or 255!
int height = img.rows, width = img.cols;
BinaryKernel kernel = full3Kernel;
if(nConn == 4){
kernel = crossKernel;
}
//?
//ignore foreground on boundary, set them to background first
for(int i = 0; i < height; i++){
img.at<uchar>(i, 0) = img.at<uchar>(i, width-1) = 255;
}
for(int j = 0; j < width; j++){
img.at<uchar>(0, j) = img.at<uchar>(height-1, j) = 255;
}
//"target" will contain one connected component in each iteration
//"last" stores the last result of "target"
cv::Mat target(cv::Size(width, height), CV_8UC1, cv::Scalar(255));
cv::Mat last, diff;
int nConnRgn = 0;
for(int row = 0; row < height; row++){
for(int col = 0; col < width; col++){
//ignore background
if(img.at<uchar>(row, col) != 0) continue;
//reset to all background
target.setTo(255); //or target = cv::Scalar:all(255);
//set current point to foreground
target.at<uchar>(row, col) = 0;
//from FillRgn
do{
last = target;
Dilate(target, kernel);
//revise "revImg" from FillRgn to "img"
cv::bitwise_or(target, img, target);
cv::bitwise_xor(target, last, diff);
}while(cv::countNonZero(diff) > 0);
for(int i = 0; i < height; i++){
for(int j = 0; j < width; j++){
if((int)target.at<uchar>(i, j) == 0){
//revise in-place
img.at<uchar>(i, j) = nConnRgn;
}
}
}
nConnRgn++;
if(nConnRgn > 255){
cout << "only support at most 256 connected components!" << endl;
break;
}
}
if(nConnRgn > 255){
break;
}
}
for(int row = 0; row < height; row++){
for(int col = 0; col < width; col++){
//ignore background
if(img.at<uchar>(row, col) == 255) continue;
img.at<uchar>(row, col) = (int)(img.at<uchar>(row, col) *255.0 / (double)nConnRgn);
}
}
};
void Thining(cv::Mat& img){
//p.307
/*
P3 P2 P9
P4 P1 P8
P5 P6 P7
condition 1: 2 <= NZ(P1) <= 6, NZ: foreground pixel count in its 8-neighborhood
condition 2: Z0(P1) = 1, Z0: when going through its 8-neighborhood counterclockwise,
how many times the pixel changes from bg to fg
condition 3: P2*P4*P8 = 0 or Z0(P2) not equal to 1
condition 4: P2*P4*P6 = 0 or Z0(P4) not equal to 1
*/
//todo: fix the problem that it results in double boundaries
int height = img.rows, width = img.cols;
/*
only look at pixel that are at least 2 pixels from boundary,
because we will need to its 5*5 neighborhood later
*/
bool cond1, cond2, cond3, cond4, modified;
vector<vector<FB>> nbhd(5, vector<FB>(5, FB::X));
//this is the coordinate used to index nbhd
//pad {-1,-1} before for readibility
vector<vector<int>> P1to9 = {
{-1, -1}, {2,2}, {1,2}, {1, 1}, {2, 1}, {3, 1}, {3, 2}, {3, 3}, {2, 3}, {1, 3}
};
vector<int> P2 = P1to9[2], P4 = P1to9[4], P6 = P1to9[6], P8 = P1to9[8];
//going counterclockwise
vector<vector<int>> ccw = {
{1, 2}, {1, 1}, {2, 1}, {3, 1}, {3, 2}, {3, 3}, {2, 3}, {1, 3}
};
vector<vector<int>> ccwP2 = ccw;
//P2 is one pixel above P1, so as its neighborhood
for(int i = 0; i < 8; i++){
ccwP2[i][0] = ccw[i][0]-1;
}
vector<vector<int>> ccwP4 = ccw;
//P4 is one pixel left to P1, so as its neighborhood
for(int i = 0; i < 8; i++){
ccwP4[i][1] = ccw[i][1]-1;
}
int iters = 0;
vector<vector<int>> toDeletes;
do{
// cout << "iters: " << iters << endl;
iters++;
//reset for each iteration
modified = false;
toDeletes.clear();
for(int row = 2; row < height-2; row++){
for(int col = 2; col < width-2; col++){
//ignore background
if(img.at<uchar>(row, col) == 255) continue;
//reset for each pixel
cond1 = false; cond2 = false; cond3 = false; cond4 = false;
//get 5*5 neighborhood's pixel value
for(int i = -2; i <= 2; i++){
for(int j = -2; j <= 2; j++){
//foreground or background
nbhd[2+i][2+j] = (img.at<uchar>(row+i, col+j) == 0) ? FB::F : FB::B;
}
}
//condition1: 2 <= NZ(P1) <= 6
int nz = 0; //NZ(P1)
for(int i = 1; i <= 3; i++){
for(int j = 1; j <= 3; j++){
//skip P1 itself
if(i == 2 && j == 2) continue;
if(nbhd[i][j] == FB::F){
nz++;
}
}
}
cond1 = ((nz >= 2) && (nz <= 6));
//condition2: Z0(P1) == 1
int z0 = 0;
for(int p = 0; p < 8; p++){
int ci = ccw[p][0], cj = ccw[p][1];
int ni = ccw[(p+1)%8][0], nj = ccw[(p+1)%8][1];
if(nbhd[ci][cj] == FB::B && nbhd[ni][nj] == FB::F){
//transform from bg to fg
z0++;
}
}
cond2 = (z0 == 1);
//condition3: P2*P4*P8 = 0 or Z0(P2) not equal to 1
if(nbhd[P2[0]][P2[1]] == FB::B || nbhd[P4[0]][P4[1]] == FB::B || nbhd[P8[0]][P8[1]] == FB::B){
cond3 = true;
}else{
int z0P2 = 0;
for(int p = 0; p < 8; p++){
int ci = ccwP2[p][0], cj = ccwP2[p][1];
int ni = ccwP2[(p+1)%8][0], nj = ccwP2[(p+1)%8][1];
if(nbhd[ci][cj] == FB::B && nbhd[ni][nj] == FB::F){
//transform from bg to fg
z0P2++;
}
}
cond3 = (z0P2 != 1);
}
//condition4: P2*P4*P6 = 0 or Z0(P4) not equal to 1
if(nbhd[P2[0]][P2[1]] == FB::B || nbhd[P4[0]][P4[1]] == FB::B || nbhd[P6[0]][P6[1]] == FB::B){
cond4 = true;
}else{
int z0P4 = 0;
for(int p = 0; p < 8; p++){
int ci = ccwP4[p][0], cj = ccwP4[p][1];
int ni = ccwP4[(p+1)%8][0], nj = ccwP4[(p+1)%8][1];
if(nbhd[ci][cj] == FB::B && nbhd[ni][nj] == FB::F){
//transform from bg to fg
z0P4++;
}
}
cond4 = (z0P4 != 1);
}
if(cond1 && cond2 && cond3 && cond4){
//set to bg
toDeletes.push_back({row, col});
modified = true;
}else{
//fg
}
// if(modified) cout << "modified" << endl;
} //col
} //row
for(vector<int>& p : toDeletes){
img.at<uchar>(p[0], p[1]) = 255;
}
}while(modified);
};
void ThiningZhangSuen(cv::Mat& img){
//https://blog.csdn.net/jia20003/article/details/52142992
/*
P3 P2 P9
P4 P1 P8
P5 P6 P7
step 1: scan image all set the pixels meet 4 conditions to bg
condition 1: 2 <= NZ(P1) <= 6, NZ: foreground pixel count in its 8-neighborhood
condition 2: Z0(P1) = 1, Z0: when going through its 8-neighborhood counterclockwise,
how many times the pixel changes from bg to fg
condition 3: P2*P4*P8 = 0
condition 4: P2*P4*P6 = 0
step 2: scan image all set the pixels meet 4 conditions to bg
condition 1: 2 <= NZ(P1) <= 6, NZ: foreground pixel count in its 8-neighborhood
condition 2: Z0(P1) = 1, Z0: when going through its 8-neighborhood counterclockwise,
how many times the pixel changes from bg to fg
condition 3: P2*P6*P8 = 0
condition 4: P4*P6*P8 = 0
*/
//todo: fix the problem that it results in double boundaries
int height = img.rows, width = img.cols;
/*
only look at pixel that are at least 2 pixels from boundary,
because we will need to its 5*5 neighborhood later
*/
bool cond1, cond2, cond3, cond4, modified;
vector<vector<FB>> nbhd(5, vector<FB>(5, FB::X));
//this is the coordinate used to index nbhd
//pad {-1,-1} before for readibility
vector<vector<int>> P1to9 = {
{-1, -1}, {2,2}, {1,2}, {1, 1}, {2, 1}, {3, 1}, {3, 2}, {3, 3}, {2, 3}, {1, 3}
};
vector<int> P2 = P1to9[2], P4 = P1to9[4], P6 = P1to9[6], P8 = P1to9[8];
//going counterclockwise
vector<vector<int>> ccw = {
{1, 2}, {1, 1}, {2, 1}, {3, 1}, {3, 2}, {3, 3}, {2, 3}, {1, 3}
};
vector<vector<int>> ccwP2 = ccw;
//P2 is one pixel above P1, so as its neighborhood
for(int i = 0; i < 8; i++){
ccwP2[i][0] = ccw[i][0]-1;
}
vector<vector<int>> ccwP4 = ccw;
//P4 is one pixel left to P1, so as its neighborhood
for(int i = 0; i < 8; i++){
ccwP4[i][1] = ccw[i][1]-1;
}
int iters = 0;
vector<vector<int>> toDeletes;
do{
// cout << "iters: " << iters << endl;
iters++;
//reset for each iteration
modified = false;
//step 1
toDeletes.clear();
for(int row = 2; row < height-2; row++){
for(int col = 2; col < width-2; col++){
//ignore background
if(img.at<uchar>(row, col) == 255) continue;
//reset for each pixel
cond1 = false; cond2 = false; cond3 = false; cond4 = false;
//get 5*5 neighborhood's pixel value
for(int i = -2; i <= 2; i++){
for(int j = -2; j <= 2; j++){
//foreground or background
nbhd[2+i][2+j] = (img.at<uchar>(row+i, col+j) == 0) ? FB::F : FB::B;
}
}
//condition1: 2 <= NZ(P1) <= 6
int nz = 0; //NZ(P1)
for(int i = 1; i <= 3; i++){
for(int j = 1; j <= 3; j++){
//skip P1 itself
if(i == 2 && j == 2) continue;
if(nbhd[i][j] == FB::F){
nz++;
}
}
}
cond1 = ((nz >= 2) && (nz <= 6));
//condition2: Z0(P1) == 1
int z0 = 0;
for(int p = 0; p < 8; p++){
int ci = ccw[p][0], cj = ccw[p][1];
int ni = ccw[(p+1)%8][0], nj = ccw[(p+1)%8][1];
if(nbhd[ci][cj] == FB::B && nbhd[ni][nj] == FB::F){
//transform from bg to fg
z0++;
}
}
cond2 = (z0 == 1);
//condition3: P2*P4*P8 = 0
if(nbhd[P2[0]][P2[1]] == FB::B || nbhd[P4[0]][P4[1]] == FB::B || nbhd[P8[0]][P8[1]] == FB::B){
cond3 = true;
}
//condition4: P2*P4*P6 = 0
if(nbhd[P2[0]][P2[1]] == FB::B || nbhd[P4[0]][P4[1]] == FB::B || nbhd[P6[0]][P6[1]] == FB::B){
cond4 = true;
}
if(cond1 && cond2 && cond3 && cond4){
//set to bg
// img.at<uchar>(row, col) = 255;
toDeletes.push_back({row, col});
modified = true;
}/*else{
//fg
}*/
// if(modified) cout << "modified" << endl;
} //col
} //row
if(toDeletes.size() == 0) break;
for(vector<int>& p: toDeletes){
img.at<uchar>(p[0], p[1]) = 255;
}
//step 2
toDeletes.clear();
for(int row = 2; row < height-2; row++){
for(int col = 2; col < width-2; col++){
//ignore background
if(img.at<uchar>(row, col) == 255) continue;
//reset for each pixel
cond1 = false; cond2 = false; cond3 = false; cond4 = false;
//get 5*5 neighborhood's pixel value
for(int i = -2; i <= 2; i++){
for(int j = -2; j <= 2; j++){
//foreground or background
nbhd[2+i][2+j] = (img.at<uchar>(row+i, col+j) == 0) ? FB::F : FB::B;
}
}
//condition1: 2 <= NZ(P1) <= 6
int nz = 0; //NZ(P1)
for(int i = 1; i <= 3; i++){
for(int j = 1; j <= 3; j++){
//skip P1 itself
if(i == 2 && j == 2) continue;
if(nbhd[i][j] == FB::F){
nz++;
}
}
}
cond1 = ((nz >= 2) && (nz <= 6));
//condition2: Z0(P1) == 1
int z0 = 0;
for(int p = 0; p < 8; p++){
int ci = ccw[p][0], cj = ccw[p][1];
int ni = ccw[(p+1)%8][0], nj = ccw[(p+1)%8][1];
if(nbhd[ci][cj] == FB::B && nbhd[ni][nj] == FB::F){
//transform from bg to fg
z0++;
}
}
cond2 = (z0 == 1);
//condition3: P2*P6*P8 = 0
if(nbhd[P2[0]][P2[1]] == FB::B || nbhd[P6[0]][P6[1]] == FB::B || nbhd[P8[0]][P8[1]] == FB::B){
cond3 = true;
}
//condition4: P4*P6*P8 = 0
if(nbhd[P4[0]][P4[1]] == FB::B || nbhd[P6[0]][P6[1]] == FB::B || nbhd[P8[0]][P8[1]] == FB::B){
cond4 = true;
}
if(cond1 && cond2 && cond3 && cond4){
//set to bg
// img.at<uchar>(row, col) = 255;
toDeletes.push_back({row, col});
modified = true;
}/*else{
//fg
}*/
// if(modified) cout << "modified" << endl;
} //col
} //row
if(toDeletes.size() == 0) break;
for(vector<int>& p: toDeletes){
img.at<uchar>(p[0], p[1]) = 255;
}
}while(modified);
};
//8 directions
vector<vector<int>> dirs = {
{-1,-1}, {-1,0}, {-1,1}, {0,-1}, {0,1}, {1,-1}, {1,0}, {1,1}
};
int TestConnRgn(cv::Mat& img, vector<vector<bool>>& visited, vector<vector<int>>& ptVisited,
int& curConnRgnSize, int row, int col, int lowerThres, int upperThres){
//p.313-315
/*
curConnRgnSize < lowerThres : -1
lowerThres <= curConnRgnSize <= upperThres : 0
curConnRgnSize >= upperThres : 1
*/
curConnRgnSize++;
visited[row][col] = true;
ptVisited.push_back({row, col});
if(curConnRgnSize > upperThres) return 1;
for(vector<int>& dir : dirs){
int nrow = row + dir[0], ncol = col + dir[1];
if(nrow < 0 || nrow >= img.rows || ncol < 0 || ncol >= img.cols) continue;
if(img.at<uchar>(nrow, ncol) == 0 && !visited[nrow][ncol]){
int ret = TestConnRgn(img, visited, ptVisited, curConnRgnSize, nrow, ncol, lowerThres, upperThres);
if(ret == 1) return 1;
// if(curConnRgnSize > upperThres) return 1;
}
}
// if(curConnRgnSize > upperThres) return 1;
return (curConnRgnSize >= lowerThres) ? 0 : -1;
};
void PixelImage(cv::Mat& img, int lowerThres, int upperThres){
//p.311-313
//input img should be binary, containing only 0 or 255!
if(upperThres < lowerThres){
cout << "upperThres should >= lowerThres!" << endl;
return;
}
lowerThres = max(lowerThres, 1);
//set upper bound as 1000
upperThres = min(upperThres, 1000);
int width = img.cols, height = img.rows;
cv::Mat target(cv::Size(width, height), CV_8UC1, cv::Scalar(255));
vector<vector<bool>> visited(height, vector<bool>(width, false));
vector<vector<int>> ptVisited;
int curConnRgnSize = 0;
for(int row = 0; row < img.rows; row++){
for(int col = 0; col < img.cols; col++){
if(img.at<uchar>(row, col) == 255) continue;
// cout << "(" << row << ", " << col << ")" << endl;
visited = vector<vector<bool>>(height, vector<bool>(width, false));
ptVisited.clear();
curConnRgnSize = 0;
int ret = TestConnRgn(img, visited, ptVisited, curConnRgnSize, row, col, lowerThres, upperThres);
// cout << "ptVisited.size(): " << ptVisited.size() << ", curConnRgnSize: " << curConnRgnSize << endl;
if(ret == 0){
//calculate the centroid of current connected component
int rowMean = 0, colMean = 0;
for(vector<int>& pt : ptVisited){
rowMean += pt[0];
colMean += pt[1];
}
rowMean /= ptVisited.size();
colMean /= ptVisited.size();
//foreground
target.at<uchar>(rowMean, colMean) = 0;
// cout << "(" << rowMean << ", " << colMean << ")" << endl;
}
/*
clear visited connected component to speed up
*/
vector<int> pt = ptVisited[0];
CleanConnRgn(img, pt[0], pt[1]);
// Show(img, "process", false);
}
}
img = target;
};
void Convex(cv::Mat& img, bool constrain){
//p.317-319
//input img should be binary, containing only 0 or 255!
//not converge if we only compare with 1 last image?
//different result from textbook?
//todo: fix of the problem not converging
int width = img.cols, height = img.rows;
cv::Mat last = img, diff;
cv::Mat last2 = img, diff2;
vector<cv::Mat> D1to4 = {img.clone(), img.clone(), img.clone(), img.clone()};
vector<BinaryKernel> convexKernels = {convex1Kernel, convex2Kernel, convex3Kernel, convex4Kernel};
// cout << width*height - cv::countNonZero(diff) << " fgs in img" << endl;
for(int i = 0; i < 4; i++){
int iters = 0;
do{
iters++;
last2 = last;
last = D1to4[i];
//hit-or-miss
Erode(D1to4[i], convexKernels[i]);
// cout << "hit or miss: " << width*height - cv::countNonZero(D1to4[i]) << " ";
//union
// the text in the book says union with original "img"
// cv::bitwise_and(D1to4[i], img, D1to4[i]);
// , but the code in the book says union with "last" image
// , union with "last" image is the correct implementation
cv::bitwise_and(D1to4[i], last, D1to4[i]);
// cout << width*height - cv::countNonZero(D1to4[i]) << endl;
cv::bitwise_xor(D1to4[i], last, diff);
// cv::bitwise_xor(D1to4[i], last2, diff2);
// cout << "diff in : " << cv::countNonZero(diff) << " pixels" << endl;
// cout << "diff2 in : " << cv::countNonZero(diff2) << " pixels" << endl;
// Show(D1to4[i], "convex process", false);
//not converge if we only compare with "last"!?
//so here we need to compare with both "last" and "last2"
// }while(cv::countNonZero(diff) > 0 && cv::countNonZero(diff2) > 0);
}while(cv::countNonZero(diff) > 0);
// cout << "do " << iters << " iterations" << endl;
}
cv::Mat target(cv::Size(width, height), CV_8UC1, cv::Scalar(255));
for(int row = 0; row < height; row++){
for(int col = 0; col < width; col++){
//calculate union
if((int)D1to4[0].at<uchar>(row, col)*(int)D1to4[1].at<uchar>(row, col)*(int)D1to4[2].at<uchar>(row, col)*(int)D1to4[3].at<uchar>(row, col) == 0){
target.at<uchar>(row, col) = 0;
}
}
}
if(constrain){
//constrain the convex to not larger than object's bounding rectangle
//find boudning box
int l = width-1, r = 0, t = height-1, b = 0;
for(int row = 0; row < height; row++){
for(int col = 0; col < width; col++){
if(img.at<uchar>(row, col) == 0){
l = min(l, col);