-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
45 lines (39 loc) · 1.51 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
from keras.models import Sequential
from keras.layers import Embedding, Dense
from keras.layers.recurrent import LSTM
from keras.regularizers import l2
class LSTMModel:
def __init__(self, keywords, vocab_dim, win_size):
self.keywords = keywords
self.keyword_size = len(keywords)
self.vocab_size = self.keyword_size + win_size + 1
self.win_size = win_size
self.vocab_dim = vocab_dim
self.model = self._build_model(vocab_dim, win_size)
def _build_model(self, vocab_dim, win_size):
model = Sequential()
model.add(Embedding(self.vocab_size, vocab_dim, input_length=win_size))
model.add(LSTM(1024, input_length=win_size, return_sequences=True))
model.add(Dense(self.vocab_size, activation='softmax',
W_regularizer=l2(0)))
model.compile(optimizer='adagrad', lr=0.001, metrics=['accuracy'],
loss='categorical_crossentropy')
return model
def train(self, X, y):
"""
:type X: numpy array (batch, win_size)
:type y: numpy array (batch,)
:rtype: loss (accuracy=True)
"""
B = y.shape[0]
Y = np.zeros((B, self.vocab_size),
dtype=np.int)
Y[np.arange(B), y] = 1
return self.model.train_on_batch(X, Y)
def predict(self, X):
return self.model.predict(X)
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)