-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparaOCRT.py
1385 lines (1182 loc) · 73.7 KB
/
paraOCRT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import os
import matplotlib.pyplot as plt
import tensorflow as tf
import h5py
from scipy.ndimage import zoom
class paraOCRT:
def __init__(self, recon_shape, RI_shape_scale, dxyz, hdf5_path, batch_size, xyz_offset=np.zeros(3), scale=1,
momentum=.5):
# recon_shape: the pixel dimensions of the 3D reconstruction;
# RI_shape_scale: number between 0 and 1 (or can be >1) specifying what fraction of the size the RI map is
# relative to the recon;
# dxyz: pixel size of recon;
# batch_size is the stratified batch size, meaning every angle will have the same exact spatial positions;
# scale: recon_shape * scale is the actual shape;
self.recon_shape_base = recon_shape # base shape is full shape, as you could use multi-resolution;
self.RI_shape_scale = RI_shape_scale # however, RI will always be the same shape, since it's a tf.Variable;
self.dxyz = dxyz # recon pixel size in um;
self.xyz_offset = xyz_offset
self.step = 1.083639771532828 # axial spacing between pixels in air in um in the OCT system;
self.batch_size = batch_size
self.scale = scale
self.momentum = tf.Variable(momentum, dtype=tf.float32, name='momentum', trainable=False) # make this a
# variable so we can change it via .assign() after optimization;
self.sig_proj = .42465 # for the intepolation kernel width;
self.optimizer = tf.keras.optimizers.Adam
self.reuse_batch = None # how many times to reuse the same batch in a row; if None, don't reuse;
self.hdf5_path = hdf5_path # for batching from an hdf5 file;
self.shuffle_size = None # when creating a tf dataset, what's the shuffle buffer size?
self.prefetch = 1 # how many batches to prefetch?
self.stop_gradient_projection = True # stop gradient on the recon after backprojection;
self.shuffle_unit = None # for shuffling the hdf5 dataset; probably should keep this None because it's slow;
self.th_range = None # which angle indices to use (None means use all); note that normally you would just pass
# the subsetted dataset, but the issue is that th hdf5 generator contains all the data; therefore, index out th
# probe and galvo scan data, but pass the hdf5 path with the appropriate th_range here;
self.n_back = 1
self.n_dome = 1.453 # RI of dome, if applicable; fused silica;
self.optimize_RI = True # whether to optimize RI distribution;
self.use_intersection_loss = True # still have to supply the regularization coefficient;
self.use_first_reflection_RI_loss = False # still have to supply the regularization coefficient;
self.use_first_reflection_RI_stop_gradient = False # an alternate method; if you want, you can use both;
self.z_downsamp = None # an integer specifying how many times to downsamp rayprop in z dimension;
self.filter_delta = .01 # filter = sqrt(f^2+delta);
self.correct_momentum_bias = False # adam-like bias correction; should probably be used only when
# self.momentum is very small (note that self.momentum corresponds to 1-momentum in the paper);
self.correct_momentum_bias_in_loss = False # similar to correct_momentum_bias, but don't alter how the
# reconstruction is made, but rather alter how the loss is computed;
# OCT volume dimensions:
self.data_num_x = 400
self.data_num_y = 400
self.data_num_z = 2048
self.z_start = None # if you want to specify a sub-range of the A-scans to backproject;
self.z_end = None
self.ckpt = None # for checkpointing models
def generate_dataset(self):
# batching is always done, and is done in a stratified manner
dataset = tf.data.Dataset.from_generator(self.hdf5_generator, (tf.float32, tf.int32))
assert self.shuffle_size == 1 # shuffling is handled by generator; dataset is larger than RAM;
dataset = dataset.shuffle(self.shuffle_size)
# batch goes before repeat to enforce clear boundary between epochs; otherwise, loading from hdf5 file could be
# slowed down because the A-scans are not contiguous in memory (this would be worse if you're shuffling, which
# is not handled here by tf.data, but by the generator);
# https://www.tensorflow.org/guide/data#training_workflows
dataset = dataset.batch(self.batch_size, drop_remainder=True)
dataset = dataset.repeat(None) # go forever; shuffle before repeat means every element of an epoch
# is shown before moving to the next epoch (see above link);
if self.reuse_batch is not None:
dataset = dataset.flat_map(lambda x, y: tf.data.Dataset.from_tensors((x, y)).repeat(self.reuse_batch))
dataset = dataset.prefetch(self.prefetch)
return dataset # need to iterate over this
def _generate_generator(self):
# takes the hdf5 file and outputs a generator that yields a stratified batch of A-scans and the corresponding
# indices;
# hdf5 file has as many datasets as there are angles;
# assumes the dataset has been preshuffled per angle, specified by shuffle indices;
# th is a list of indices of different probe positions to use;
with h5py.File(self.hdf5_path, 'r') as f:
num_x = f.attrs['num_x']
num_y = f.attrs['num_y']
num_th = f.attrs['num_th']
stack_shape = (num_th, num_x, num_y)
flattened = f.attrs['flattened']
assert flattened # for now, since this function always assumes preshuffled stacks;
global_Ascan_flat_inds = np.array(f['global_Ascan_flat_inds'])
global_Ascan_flat_inds = [[i for i in j] for j in
global_Ascan_flat_inds] # convert to list, slightly faster looping;
if self.th_range is None:
th_list = range(num_th)
else:
th_list = list(self.th_range) # lists loop faster than numpy arrays?
xy_inds = range(num_x * num_y) # if flattened, read in sequence (blocked shuffling happens inside generator);
if flattened:
if self.shuffle_unit is None: # don't shuffle
def generator():
with h5py.File(self.hdf5_path, 'r') as f:
for xy_i in xy_inds:
Ascans = [f[str(th_i)][xy_i] for th_i in th_list]
indices = [global_Ascan_flat_inds[th_i][xy_i] for th_i in th_list]
# yielding these indices^ doesn't add that much overhead;
yield Ascans, indices
else:
# shuffle unit must divide evenly into the number of A-scans per angle;
assert (num_x * num_y) % self.shuffle_unit == 0
def generator():
# block shuffling of flattened spatial inds:
# do this inside the generator so after each epoch, you get a new order:
xy_inds_shuffled = np.reshape(xy_inds, (-1, self.shuffle_unit))
xy_inds_shuffled = np.random.permutation(xy_inds_shuffled)
xy_inds_shuffled = xy_inds_shuffled.flatten()
with h5py.File(self.hdf5_path, 'r') as f:
for xy_i in xy_inds_shuffled:
Ascans = [f[str(th_i)][xy_i] for th_i in th_list]
indices = [global_Ascan_flat_inds[th_i][xy_i] for th_i in th_list]
# yielding these indices^ doesn't add that much overhead;
yield Ascans, indices
else:
raise Exception('generator not implemented for non-flattened datasets')
self.hdf5_generator = generator
def create_variables(self, nominal_probe_xy, nominal_galvo_xy, propagation_model='parabolic',
learning_rates=None, variable_initial_values=None, recon=None):
# nominal_probe_xy: _ by 2 array of the programmed xy coordinate trajectory of the probe;
# nominal_galvo_xy: _ by 2 array of the programmed xy scan amplitudes for each probe position;
# recon and normalize are optional initial estimates;
self.recon_shape = np.int32(np.array(self.recon_shape_base) * self.scale)
self.propagation_model = propagation_model
self.nominal_probe_xy = nominal_probe_xy
self.nominal_galvo_xy = nominal_galvo_xy
self.data_num_th = len(nominal_galvo_xy) # number of volumes acquired;
if self.th_range is None:
# called 'gathered' because we will use tf.gather later;
self.data_num_th_gathered = len(nominal_galvo_xy)
else:
self.data_num_th_gathered = len(self.th_range) # number of volumes acquired;
self.RI_shape = tf.cast(self.recon_shape * self.RI_shape_scale, dtype=tf.int32)
self.dxyz /= self.scale
self.recon_fov = self.dxyz * self.recon_shape
# dictionaries of tf.Variables and their corresponding optimizers;
self.train_var_dict = dict()
self.optimizer_dict = dict()
self.non_train_dict = dict() # dict of variables that aren't trained (probably .assigned()'d; for checkpoints);
self.tensors_to_track = dict() # intermediate tensors to track; have a tf.function return the contents;
def use_default_for_missing(input_dict, default_dict):
# to be used directly below; allows for dictionaries in which not all keys are specified; if not specified,
# then use default_dict's value;
if input_dict is None: # if nothing given, then use the default;
return default_dict
else:
for key in default_dict:
if key in input_dict:
if input_dict[key] is None: # if the key is present, but None is specified;
input_dict[key] = default_dict[key]
else: # i.e., use the value given;
pass
else: # if key is not even present;
input_dict[key] = default_dict[key]
return input_dict
# define variables to be optimized, based on a dictionary of variable names and learning rates/initial values;
# these variables are always used; otherwise, add additional variables via the propagation_model:
# (negative learning rates mean that later we will not update these variables)
default_learning_rates = {'f_mirror': -1e-3, 'f_lens': 1e-3,
'galvo_xy': 1e-3, 'galvo_normal': 1e-3, 'galvo_theta': 1e-3,
'probe_dx': 1e-3, 'probe_dy': 1e-3, 'probe_z': 1e-3, 'probe_normal': 1e-3,
'probe_theta': 1e-3, 'd_before_f': 1e-3, 'RI': -1e-3, 'Ascan_background': 1e-3}
default_variable_initial_values = {'f_mirror': 12.5, # focal length of parabolic mirror in mm;
'f_lens': 30, # effective focal length of lens before the mirror in mm;
'galvo_xy': .5 * np.ones(2, dtype=np.float32), # scan ampitude at lens
# principal plane in x in mm;
'galvo_normal': np.array((1e-7, 1e-7, -1), dtype=np.float32), # direction
# of the center ray;
'galvo_theta': 0, # angle-vector representation of rotation;
'probe_dx': 0, # global x shift in the nominal probe trajectories;
'probe_dy': 0, # global y shift in the nominal probe trajectories;
'probe_z': 25, # distance between the lens and mirror foci (the origin);
'probe_normal': np.array((1e-7, 1e-7, -1), dtype=np.float32), # normal of
# the probe translation plane, in case there's any relative tilt;
'probe_theta': 0, # angle-vector representation of probe translation plane;
'd_before_f': 1, # where the A-scans start relative to the focus;
# positive number means before focus; in mm;
'RI': self.n_back + np.zeros(self.RI_shape, dtype=np.float32), # RI
# distribution;
'Ascan_background': np.zeros(self.data_num_z, dtype=np.float32), # infer
# background OCT noise;
}
# if there are additional variables, define here (modify the two dictionaries):
if 'nonparametric' in propagation_model:
# allow the final boundary conditions to vary arbitrarily:
default_learning_rates = {**default_learning_rates, 'delta_r': 1e-3, 'delta_u': 1e-3, 'galvo_xy_per': 1e-3,
'galvo_theta_in_plane_per': 1e-3, 'probe_dxyz_per': 1e-3, 'r_2nd_order': 1e-3,
'u_2nd_order': 1e-3}
default_variable_initial_values = {**default_variable_initial_values,
'delta_r': np.zeros((self.data_num_th, 3), dtype=np.float32), # position
'delta_u': np.zeros((self.data_num_th, 3), dtype=np.float32), # orient;
'galvo_xy_per': np.ones((self.data_num_th, 2), dtype=np.float32), # per
# probe position amplitude;
'galvo_theta_in_plane_per': np.zeros(self.data_num_th, dtype=np.float32),
# per probe position in-plane angle;
'probe_dxyz_per': np.zeros((self.data_num_th, 3), dtype=np.float32),
# per probe position xyz shift;
'r_2nd_order': np.zeros((self.data_num_th, 5, 3)), # 2nd order
# correction of A-scan position; 3 sets of 5 coefficients:
# a0*x + a1*y + a2*x**2 + a3*y**2 + a4*x*y; (one for x,y,z); allowing
# this for xy allows for nonlinearly spaced A-scans;
'u_2nd_order': np.zeros((self.data_num_th, 5, 3)), # likewise, for
# angular fanning;
}
if 'higher_order_correction' in propagation_model:
# try 3rd and 4th order correction on top of the 2nd order
assert 'nonparametric' in propagation_model
default_learning_rates = {**default_learning_rates,'r_higher_order': 1e-3, 'u_higher_order': 1e-3}
default_variable_initial_values = {**default_variable_initial_values,
'r_higher_order': np.zeros((self.data_num_th, 9, 3)),
# 3rd and 4th order correction of A-scan position; 3 sets of 9 coeffs:
# a0*x**3 + a1*y**3 + a2*x**2*y + a3*x*y**2 + ...
# a4*x**4 + a5*y**4 + a6*x**3*y + a7*x**2*y**2 + a8*x*y**3;
'u_higher_order': np.zeros((self.data_num_th, 9, 3)), # likewise, for
# angular fanning;
}
if 'dome' in propagation_model:
# allow dome parameters to update:
# by default, don't allow the radii to vary, and use the manufacturer nominal values:
default_learning_rates = {**default_learning_rates, 'dome_outer_radius': -1e-3,
'dome_inner_radius': -1e-3, 'dome_center': 1e-3}
default_variable_initial_values = {**default_variable_initial_values,
'dome_outer_radius': np.float32(8.128), # in mm;
'dome_inner_radius': np.float32(6.858), # in mm;
'dome_center': np.zeros(3, dtype=np.float32) # parabolic center origin;
}
if self.correct_momentum_bias_in_loss:
# the effective momentum will be smaller; by how much depends on the sparsity of the update, which we learn;
default_learning_rates = {**default_learning_rates, 'effective_inverse_momentum': 1000}
default_variable_initial_values = {**default_variable_initial_values,
'effective_inverse_momentum': np.float32(1 / self.momentum)
}
learning_rates = use_default_for_missing(learning_rates, default_learning_rates)
variable_initial_values = use_default_for_missing(variable_initial_values, default_variable_initial_values)
if 'delta_r' in variable_initial_values:
# for keeping the mean shift 0, if optimizing this;
self.delta_r_initial = np.mean(variable_initial_values['delta_r'], axis=0)[None]
# create variables and train ops based on the initial values:
for key in learning_rates.keys(): # learning_rates and variable_initial_values should have the same keys;
var = tf.Variable(variable_initial_values[key], dtype=tf.float32, name=key)
opt = self.optimizer(learning_rate=learning_rates[key])
self.train_var_dict[key] = var
self.optimizer_dict[key] = opt
# non-trainable variables (which are updated with .assign()):
if recon is None: # if none supplied, initialize with 0s;
recon_previous = np.zeros(self.recon_shape)
else: # otherwise, upsample to the current shape (trilinear interpolation);
recon_previous = zoom(recon, self.recon_shape / np.array(recon.shape), order=2)
# initialize first recon and normalize tensors for momentum; use the scaled recon shape, not the base shape;
recon_previous = tf.Variable(recon_previous, dtype=tf.float32, trainable=False)
self.non_train_dict['recon_previous'] = recon_previous
# coordinates of the IDEAL full boundary conditions (i.e., for all A-scans); to be indexed with batch_inds;
# they will be transformed according to the tf.Variables describing misalignment;
self.probe_xy_BC = self.nominal_probe_xy[self.th_range].squeeze() # squeeze if self.th_range is None;
self.probe_xy_BC = np.tile(self.probe_xy_BC[None, :, :], [self.batch_size, 1, 1]).reshape(-1, 2)
# since the batching is stratified by angle, just need to tile the nominal_probe_xy;
x = np.linspace(-1, 1, self.data_num_x)
y = np.linspace(-1, 1, self.data_num_y)
x, y = np.meshgrid(x, y, indexing='ij')
self.galvo_xy_BC = np.stack([x.flatten(), y.flatten()], axis=1)
self.galvo_xy_BC = np.float32(self.galvo_xy_BC[None, :, :] * self.nominal_galvo_xy[:, None, :])
# shape: data_num_th, data_num_x*data_num_y, 2;
self.galvo_xy_BC = self.galvo_xy_BC.reshape(-1, 2) # flatten out all but last dim for batch_inds gathering;
# NOTE 1 regarding probe_xy_BC and galvo_xy_BC: galvo_xy_BC is NOT indexed by th_range because th indices
# generated by the generator are global indices, so all of galvo_xy_BC need to present when using tf.gather; on
# the other hand, probe_xy_BC is not gathered using batch indices, but rather we just use tiling because it's a
# stratified batching scheme;
# NOTE 2: the dim order is typically spatial xy, theta (probe positions), 2/3 -- that is, the first dimension is
# the batch dimension; HOWEVER, for things that use "batch_inds" (galvo_xy_BC, xy_BC), the first two dimensions
# should be swapped, because when I saved the hdf5 files, the A-scans were packed with the theta dimension first
if 'nonparametric' in propagation_model:
# make another copy for 2nd order polynomial correction;
self.xy_BC = np.stack([x.flatten(), y.flatten()], axis=1)
self.xy_BC = np.tile(self.xy_BC[None, :, :], [self.data_num_th, 1, 1]) # shape: data_num_th, num_x*num_y,2;
# note: don't tile with self.data_num_th_gathered, because xy_BC will be subject to tf.gather later, and
# requires participation of all angles, regardless of angle downsampling;
self.xy_BC = np.float32(self.xy_BC.reshape(-1, 2))
# create a list of booleans to accompany self.train_var_list and self.optimizer_list to specify whether to train
# those variables (as specified by the whether the user-specified learning rates are negative); doing this so
# that autograph doesn't traverse all branches of the conditionals; if the user ever wants to turn off
# optimization of a variable mid-optimization, then just do .assign(0) to the learning rate, such that the
# update is still happening, but the change is 0;
self.trainable_or_not = list()
for var in self.train_var_dict:
name = self.train_var_dict[var].name[:-2]
flag = learning_rates[name] > 0
self.trainable_or_not.append(flag)
assert (self.correct_momentum_bias + self.correct_momentum_bias_in_loss) < 2 # only exactly one can be true;
if self.correct_momentum_bias or self.correct_momentum_bias_in_loss:
# for keeping track of iteration number; note that we can't necessarily use an optimizer's iteration counter
# because we may update the reconstruction with momentum without doing a gradient update;
assert recon is None # the bias correction is only valid when recon = 0;
self.iter = tf.Variable(0, dtype=tf.float32, trainable=False)
# create hdf5 generator:
self._generate_generator()
# if available, load center Ascan global coordinates:
with h5py.File(self.hdf5_path, 'r') as f:
if 'center_Ascan_inds' in list(f.keys()) and self.use_intersection_loss:
self.center_Ascan_inds = np.array(f['center_Ascan_inds'])
# center_Ascan_inds, as stored, operates on non-scrambled-order A-scans; need to unshuffle;
shuffle_inds = np.array(f['preshuffle_inds'])
unshuffle_inds = np.argsort(shuffle_inds) # want inverse indices;
# unravel from 3D then ravel into 2D:
th_list, x_list, y_list = np.unravel_index(self.center_Ascan_inds,
(self.data_num_th, self.data_num_x, self.data_num_y))
xy_inds = np.ravel_multi_index((x_list, y_list), (self.data_num_x, self.data_num_y))
xy_inds_unshuffled = unshuffle_inds[np.arange(len(unshuffle_inds)), xy_inds]
# reravel so that center_Ascan_inds_ operates on scrambled coordinates:
x_list_, y_list_ = np.unravel_index(xy_inds_unshuffled, (self.data_num_x, self.data_num_y))
center_Ascan_inds_ = np.ravel_multi_index((th_list, x_list_, y_list_),
(self.data_num_th, self.data_num_x, self.data_num_y))
self.center_Ascan_inds = center_Ascan_inds_ # replace;
if self.th_range is not None:
self.center_Ascan_inds = self.center_Ascan_inds[self.th_range]
else:
self.center_Ascan_inds = None
# if available, load first reflection index:
with h5py.File(self.hdf5_path, 'r') as f:
if 'first_reflection_index' in list(f.keys()):
self.first_reflection_index = np.array(f['first_reflection_index']).flatten().astype(np.int32)
# flatten for gathering with batch_inds (just like self.galvo_xy_BC above);
else:
self.first_reflection_index = None
# define filter for FBP (ramp filter with correction at origin):
self.FBP_filter = np.sqrt(np.fft.fftfreq(self.data_num_z, d=1) ** 2 + self.filter_delta).astype(np.complex64)
def _gather_by_th_range(self, var, axis=None):
# if th_range consists of fewer angles than the total saved in the hdf5 file, then use tf.gather on the
# variables, which are always defined based on the original total length; we do this because we can load old
# models that optimized with a different number of angles;
if self.data_num_th == self.data_num_th_gathered:
return var # do nothing
else:
return tf.gather(var, self.th_range, axis)
def _axis_angle_rotmat(self, axis, angle):
# return 3D rotation matrix given axis and angle;
# axis is of shape (3) and angle is a single number;
axis_unit, _ = tf.linalg.normalize(axis) # convert to unit vector
cos = tf.cos(angle)
sin = tf.sin(angle)
ux = axis_unit[0]
uy = axis_unit[1]
uz = axis_unit[2]
r00 = cos + ux ** 2 * (1 - cos)
r01 = ux * uy * (1 - cos) - uz * sin
r02 = ux * uz * (1 - cos) + uy * sin
r10 = ux * uy * (1 - cos) + uz * sin
r11 = cos + uy ** 2 * (1 - cos)
r12 = uy * uz * (1 - cos) - ux * sin
r20 = ux * uz * (1 - cos) - uy * sin
r21 = uy * uz * (1 - cos) + ux * sin
r22 = cos + uz ** 2 * (1 - cos)
rotmat = tf.stack([[r00, r01, r02],
[r10, r11, r12],
[r20, r21, r22]])
return rotmat
def _generate_2D_rotmat(self, angle):
# simple, 2D rotation; angle is a 1D vector;
cos = tf.cos(angle)
sin = tf.sin(angle)
rotmat = tf.stack([[cos, -sin],
[sin, cos]])
return rotmat # shape: 2, 2, _;
def _propagate_to_parabolic_focus(self, batch_inds, mode='all_rays'):
# generate boundary conditions from parabolic mirror parameters; need position and direction;
# then, propagate to just before the parabolic mirror's focus, and return the final position and direction,
# which will serve as the boundary conditions for ray propagation through the sample;
# mode can be 'all_rays' or 'central_ray', where the latter is for computing ray intersection loss;
if mode == 'all_rays':
batch_size = self.batch_size
elif mode == 'central_ray':
batch_size = 1
else:
raise Exception('invalid mode: ' + mode)
batch_inds = tf.reshape(batch_inds, [-1])
# unpack:
f_mirror = self.train_var_dict['f_mirror']
f_lens = self.train_var_dict['f_lens']
galvo_xy = self.train_var_dict['galvo_xy']
galvo_theta = self.train_var_dict['galvo_theta']
galvo_normal = self.train_var_dict['galvo_normal']
probe_dx = self.train_var_dict['probe_dx']
probe_dy = self.train_var_dict['probe_dy']
probe_z = self.train_var_dict['probe_z']
probe_normal = self.train_var_dict['probe_normal']
probe_theta = self.train_var_dict['probe_theta']
d_before_f = self.train_var_dict['d_before_f']
probe_xy = self.nominal_probe_xy
# gather the relevant rays to propagate, corresponding to the batch:
galvo_xy_batch = tf.gather(self.galvo_xy_BC, batch_inds) # data_num_th * batch_size by 2;
galvo_xy_batch = galvo_xy_batch * galvo_xy[None, :] # scale by scan amplitude, converting to mm?;
if 'nonparametric' in self.propagation_model:
galvo_xy_batch = tf.reshape(galvo_xy_batch, (-1, self.data_num_th_gathered, 2)) # unflatten;
# scale by scan amplitude:
galvo_xy_per = self.train_var_dict['galvo_xy_per']
galvo_xy_per = self._gather_by_th_range(galvo_xy_per, axis=0)
galvo_xy_batch = galvo_xy_batch * galvo_xy_per[None, :, :]
# rotate by in-plane angle:
galvo_theta_in_plane_per = self.train_var_dict['galvo_theta_in_plane_per']
galvo_theta_in_plane_per = self._gather_by_th_range(galvo_theta_in_plane_per, axis=0)
rotmat2D = self._generate_2D_rotmat(galvo_theta_in_plane_per)
galvo_xy_batch = tf.einsum('bac,cda->bad', galvo_xy_batch, rotmat2D)
# reflatten:
galvo_xy_batch = tf.reshape(galvo_xy_batch, (-1, 2))
galvo_xyz_batch = tf.concat([galvo_xy_batch, tf.broadcast_to(
-f_lens, (self.data_num_th_gathered * batch_size, 1))], axis=1) # add the uniform z coordinate; this
# resulting list of vectors should be normalized; data_num_th * batch_size by 3;
if mode == 'all_rays':
probe_xy_batch = self.probe_xy_BC # don't need to gather, because we already tiled;
# data_num_th*batch_size by 2;
elif mode == 'central_ray':
probe_xy_batch = self.nominal_probe_xy[self.th_range].squeeze() # don't need the tiled version;
# data_num_th by 2
probe_xyz_batch = tf.concat([probe_xy_batch, tf.broadcast_to(probe_z,
(self.data_num_th_gathered * batch_size, 1))],
axis=1)
# augment with probe_z, because rotation will be done wrt the absolute origin; data_num_th by 3;
if 'nonparametric' in self.propagation_model:
# change xyz position of probe:
probe_dxyz_per = self.train_var_dict['probe_dxyz_per']
probe_dxyz_per = self._gather_by_th_range(probe_dxyz_per, axis=0)
probe_xyz_batch = tf.reshape(probe_xyz_batch,
(-1, self.data_num_th_gathered, 3)) + probe_dxyz_per[None, :, :]
probe_xyz_batch = tf.reshape(probe_xyz_batch, (-1, 3))
# initial ray direction:
# first, rotate according to galvo_normal/galvo_theta;
# have to rotate rays; fortunately, they're all origin-centered at this stage, so it's the same as rotating
# points;
galvo_rotmat = self._axis_angle_rotmat(galvo_normal, galvo_theta)
galvo_xyz_batch @= galvo_rotmat # rotate vectors; (vectors start at origin,so just need to rotate tips);
# next, account for probe translational plane tilt:
# to do this, we rotate both ends of each ray:
ray_start = probe_xyz_batch
ray_end = ray_start + galvo_xyz_batch # shape: data_num_th * batch_size, 3;
probe_rotmat = self._axis_angle_rotmat(probe_normal, probe_theta)
ray_start @= probe_rotmat
ray_end @= probe_rotmat
# final boundary conditions:
ray_directions = ray_end - ray_start # shape: data_num_th * batch_size, 3;
ray_directions, _ = tf.linalg.normalize(ray_directions, axis=1) # normalize to unit vectors;
ray_positions = ray_start # shape: data_num_th * batch_size, 3;
ray_positions = ray_positions + tf.stack([probe_dx, probe_dy, 0])[None, :]
x0 = ray_positions[:, 0]
y0 = ray_positions[:, 1]
z0 = ray_positions[:, 2]
r0 = ray_positions # pseudonym
ux = ray_directions[:, 0]
uy = ray_directions[:, 1]
uz = ray_directions[:, 2]
u0 = ray_directions # pseudonym
# propagate to mirror:
# coefficients of quadratic equation a*d^2 + b*d + c, where d is the distance from r0 to the mirror
a = -ux ** 2 - uy ** 2
b = 4 * f_mirror * uz - 2 * ux * x0 - 2 * uy * y0
c = 4 * f_mirror * z0 - x0 ** 2 - y0 ** 2 + 4 * f_mirror ** 2
d = 2 * c / (-b + tf.sqrt(b ** 2 - 4 * a * c))
r_at_mirror = r0 + d[:, None] * u0 # position at mirror
# propagate to near focus:
n = tf.concat([-r_at_mirror[:, :2] / 2 / f_mirror,
np.ones((self.data_num_th_gathered * batch_size, 1))], 1) # surface normals
n, _ = tf.linalg.normalize(n, axis=1)
u1 = u0 - 2 * tf.reduce_sum(u0 * n, 1, keepdims=True) * n # the sum is a dot product with broadcasting;
d_remain = probe_z + 2 * f_mirror - d - d_before_f # remaining distance to propagate
r_near_focus = r_at_mirror + u1 * d_remain[:, None] # position near focus
# the next boundary conditions for ray prop through sample:
r_before_sample = r_near_focus * 1000 # convert to um;
u_before_sample = u1
# shape: data_num_th * batch_size, 3;
return r_before_sample, u_before_sample
def _propagate_through_dome(self, r, u):
# after running _propagate_to_parabolic_focus, refract through two boundaries of the dome;
# r and u are of shape _ x 3;
r /= 1000 # _propagate_to_parabolic_focus converted to um;
assert 'dome' in self.propagation_model
rc = self.train_var_dict['dome_center']
r1 = self.train_var_dict['dome_outer_radius']
r2 = self.train_var_dict['dome_inner_radius']
d_before_f = self.train_var_dict['d_before_f']
delta_r = r - rc[None, :] # for convenience;
# _propagate_to_parabolic_focus propagates to just before the focus, but that's okay; that just means the first
# propagation distance will be negative, and the lost distance will be added back; this should also undo any
# effects of d_before_f in _propagate_to_parabolic_focus;
u_dot_dr = tf.einsum('ij,ij->i', u, delta_r)
dist_to_dome1 = - u_dot_dr - tf.sqrt(r1 ** 2 - tf.norm(delta_r, axis=1) ** 2 + u_dot_dr ** 2) # take neg sol;
r_at_dome = r + u * dist_to_dome1[:, None] # position at dome
# refract using snell's law:
n_hat = r_at_dome - rc[None, :]
ri_ratio = 1 / self.n_dome
_n_dot_u = - tf.einsum('ij,ij->i', n_hat, u) # negative n dot u;
u_at_dome = ri_ratio * u + (ri_ratio * _n_dot_u -
tf.sqrt(1 - ri_ratio ** 2 * (1 - _n_dot_u ** 2)))[:, None] * n_hat
# propagate to the next surface:
delta_r = r_at_dome - rc
u_dot_dr = tf.einsum('ij,ij->i', u_at_dome, delta_r)
dist_to_dome2 = - u_dot_dr - tf.sqrt(r2 ** 2 - tf.norm(delta_r, axis=1) ** 2 + u_dot_dr ** 2)
r_at_dome = r_at_dome + u_at_dome * dist_to_dome2[:, None] # position at inner surface of dome;
# refract again using snell's law:
n_hat = r_at_dome - rc[None, :]
ri_ratio = self.n_dome
_n_dot_u = - tf.einsum('ij,ij->i', n_hat, u_at_dome)
u_at_dome = ri_ratio * u_at_dome + (ri_ratio * _n_dot_u -
tf.sqrt(1 - ri_ratio ** 2 * (1 - _n_dot_u ** 2)))[:, None] * n_hat
# make sure each ray travels the same overall OPL; since the ray was originally close to the focus, let's do
# a net OPL of 0, adjusted by d_before_f (reminder that the d_before_f in _propagate_to_parabolic_focus no
# longer does anything);
opl_remain = 0 - dist_to_dome1 - dist_to_dome2 * self.n_dome - d_before_f # subtract out opl already
# accumulated, and d_before_f;
r_before_focus = r_at_dome + u_at_dome * opl_remain[:, None]
return r_before_focus * 1000, u_at_dome
def _adjust_boundary_conditions(self, r, u, batch_inds):
# if using the nonparametric model, then you should apply this function to the output of
# propagate_to_parabolic_focus;
assert 'nonparametric' in self.propagation_model
r = tf.reshape(r, [-1, self.data_num_th_gathered, 3]) # unflatten;
u = tf.reshape(u, [-1, self.data_num_th_gathered, 3]) # unflatten;
# subtract out mean from delta_r:
delta_r = (self.train_var_dict['delta_r'] + self.delta_r_initial # make sure the mean stays the same;
- tf.reduce_mean(self.train_var_dict['delta_r'], axis=0, keepdims=True))
r_new = r + self._gather_by_th_range(delta_r, axis=0)[None, :, :]
u_new = u + self._gather_by_th_range(self.train_var_dict['delta_u'], axis=0)[None, :, :]
u_new, _ = tf.linalg.normalize(u_new, axis=2) # renormalize to unit vector;
# 2nd order correction:
# adjust position (r):
xy_batch = tf.gather(self.xy_BC, batch_inds)
xy_batch = tf.reshape(xy_batch, (-1, self.data_num_th_gathered, 2)) # unflatten;
coefs = self.train_var_dict['r_2nd_order'] # shape: data_num_th, 5, 3;
coefs = self._gather_by_th_range(coefs, axis=0)
x = xy_batch[:, :, 0:1] # shape: _, data_num_th, 1;
y = xy_batch[:, :, 1:]
dr = (x * coefs[None, :, 0, :] + y * coefs[None, :, 1, :] + x ** 2 * coefs[None, :, 2, :]
+ y ** 2 * coefs[None, :, 3, :] + x * y * coefs[None, :, 4, :])
# shape^: _, data_num_th, 3
r_new = r_new + dr
# adjust ray fans (u):
coefs = self.train_var_dict['u_2nd_order'] # shape: data_num_th, 5, 3;
coefs = self._gather_by_th_range(coefs, axis=0)
du = (x * coefs[None, :, 0, :] + y * coefs[None, :, 1, :] + x ** 2 * coefs[None, :, 2, :]
+ y ** 2 * coefs[None, :, 3, :] + x * y * coefs[None, :, 4, :])
u_new = u_new + du
if 'higher_order_correction' in self.propagation_model:
coefs = self.train_var_dict['r_higher_order']
coefs = self._gather_by_th_range(coefs, axis=0)
dr = (x ** 3 * coefs[None, :, 0, :] + y ** 3 * coefs[None, :, 1, :] + x ** 2 * y * coefs[None, :, 2, :]
+ y ** 2 * x * coefs[None, :, 3, :] + x ** 4 * coefs[None, :, 4, :] + y ** 4 * coefs[None, :, 5, :]
+ y ** 3 * x * coefs[None, :, 6, :] + x ** 2 * y ** 2 * coefs[None, :, 7, :]
+ y * x ** 3 * coefs[None, :, 8, :]
)
# shape^: _, data_num_th, 3
r_new = r_new + dr
coefs = self.train_var_dict['u_higher_order']
coefs = self._gather_by_th_range(coefs, axis=0)
du = (x ** 3 * coefs[None, :, 0, :] + y ** 3 * coefs[None, :, 1, :] + x ** 2 * y * coefs[None, :, 2, :]
+ y ** 2 * x * coefs[None, :, 3, :] + x ** 4 * coefs[None, :, 4, :] + y ** 4 * coefs[None, :, 5, :]
+ y ** 3 * x * coefs[None, :, 6, :] + x ** 2 * y ** 2 * coefs[None, :, 7, :]
+ y * x ** 3 * coefs[None, :, 8, :]
)
# shape^: _, data_num_th, 3
u_new = u_new + du
u_new, _ = tf.linalg.normalize(u_new, axis=2) # renormalize to unit vector;
r_new = tf.reshape(r_new, [-1, 3])
u_new = tf.reshape(u_new, [-1, 3])
return r_new, u_new
def _gather_RI(self, R, xyz, recon_or_RI, round_or_floor='round'):
# get RI or recon value at xyz coordinates;
# recon_or_RI specifies what R is;
# multichannel, if R is multiple channels;
if round_or_floor == 'round':
discretize = tf.round
elif round_or_floor == 'floor':
discretize = tf.floor
elif round_or_floor == 'average_neighbors':
raise Exception('average_neighbors not yet implemented')
else:
raise Exception('invalid round_or_floor')
y, z, x = tf.split(xyz, 3, axis=-1)
# convert to pixels:
if recon_or_RI == 'recon':
shape = self.recon_shape # rescaled version; not self.recon_shape_base
elif recon_or_RI == 'RI':
shape = self.RI_shape
else:
raise Exception('invalid recon_or_RI')
size_dims_float = tf.cast(shape, tf.float32)
x_c = tf.cast(discretize(((x / self.recon_fov[0]) + .5) * size_dims_float[0]), dtype=tf.int32)
y_c = tf.cast(discretize(((y / self.recon_fov[1]) + .5) * size_dims_float[1]), dtype=tf.int32)
z_c = tf.cast(discretize(((z / self.recon_fov[2]) + .5) * size_dims_float[2]), dtype=tf.int32)
xyz_c = tf.concat([x_c, y_c, z_c], axis=-1)
RI = tf.gather_nd(R, xyz_c) # on a gpu, no error is returned if out of bounds;
# handle points that are out of the fov -- fill them in with the medium RI:
# in_fov = (0 <= xyz_c < shape[None, :]) # _ by 3 (broadcasting); OperatorNotAllowedInGraphError
in_fov = tf.logical_and(tf.greater_equal(xyz_c - 1, 0), tf.less(xyz_c + 1, shape[None, :]))
in_fov = tf.math.reduce_all(in_fov, axis=-1) # all 3 dims must be in range;
RI = tf.where(in_fov, RI, self.n_back) # if in FOV, pick RI, else use background;
return RI
def _propagate_rays(self, r_before_sample, u_before_sample):
# given the initial positions and directions of the rays (after propagating thru parabolic mirror), and an RI
# map, propagate the rays, output ray paths tensors of shape;
# data_num_th, num_z, num_x, num_y, 3
def linear_step(current_step, i):
# takes one linear step; i is the step number, used for indexing the Gaussian beam, if applicable;
# wondering if we should use the ri at the current,or the next step? or incorporate some sort of momentum?
xyz_0 = current_step[:, :3] # the ':3' handles the case of using first reflection loss;
# shape: data_num_th * batch_size, 3
ri_i = self._gather_RI(self.train_var_dict['RI'],
xyz_0, recon_or_RI='RI')[:, None] # get the RI at current location
# shape: data_num_th * batch_size, 1
# take a step in the propagation direction:
xyz_i = xyz_0 + self.step / ri_i * u_before_sample
next_step = xyz_i
# shape: data_num_th * batch_size, 3
if self.use_first_reflection_RI_loss:
# if regularizing the RI based on the first reflection index, then need to keep track of the RI along
# the trajectories;
next_step = tf.concat([next_step, ri_i], axis=1)
# shape: data_num_th * batch_size, 4
return next_step
dummy = tf.range(self.data_num_z + 1) # acts as a counter for the for-loop;
self.propped = tf.scan(linear_step, dummy, r_before_sample, swap_memory=True)
self.propped = tf.transpose(self.propped, (1, 0, 2))
# shape: # data_num_th * batch_size, numz+1, 3/4
self.propped = self.propped[:, :-1, :] # strip one position along prop dim (or should it be the 1st?)
# global shift:
if self.use_first_reflection_RI_loss:
self.RI_path = self.propped[:, :, 3]
self.propped = self.propped[:, :, :3]
# unpack for convenience:
self.x_path, self.y_path, self.z_path = [unpacked[..., 0] for unpacked in tf.split(self.propped, 3, axis=2)]
def _propagate_rays_downsampled(self, r_before_sample, u_before_sample):
# same as _propagate_rays, except his function is called when each ray propagation step covers more than one
# A-scan pixel;
# z_downsamp will be the number of A-scan pixels in one step;
assert self.z_downsamp is not None
assert isinstance(self.z_downsamp, (int, np.integer))
scan_step = np.arange(1, self.z_downsamp + 1, dtype=np.float32)[:, None, None]
if self.use_first_reflection_RI_stop_gradient:
first_reflection = tf.gather(self.first_reflection_index, self.batch_inds_flat)
# shape: data_num_th * batch_size
def linear_step(current_step, i):
# takes one linear step; i is the step number, used for indexing the Gaussian beam, if applicable;
# wondering if we should use the ri at the current,or the next step? or incorporate some sort of momentum?
xyz_0 = current_step[-1:, :, :3] # the ':3' handles the case of using first reflection loss;
# shape: (z_downsamp --> 1), data_num_th * batch_size, 3
ri_i = self._gather_RI(self.train_var_dict['RI'], # get the RI at most recent position;
xyz_0[0], recon_or_RI='RI')[None, :, None]
# shape: 1, data_num_th * batch_size, 1
if self.use_first_reflection_RI_stop_gradient:
ri_i_ = tf.where(tf.math.less(i, first_reflection)[None, :, None],
tf.stop_gradient(ri_i), ri_i)
else:
ri_i_ = ri_i
# take a step in the propagation direction:
xyz_i = xyz_0 + (self.step / ri_i_ * u_before_sample[None, :, :] * scan_step)
next_step = xyz_i
# shape: z_downsamp, data_num_th * batch_size, 3
if self.use_first_reflection_RI_loss:
# if regularizing the RI based on the first reflection index, then need to keep track of the RI along
# the trajectories;
next_step = tf.concat([next_step, tf.broadcast_to(ri_i, [self.z_downsamp,
self.data_num_th_gathered * self.batch_size,
1])], axis=2)
# shape: z_downsamp, data_num_th * batch_size, 4
return next_step
num_step = self.data_num_z // self.z_downsamp + 1
dummy = tf.range(num_step, dtype=np.int32)
scan_step_first = scan_step - 1 # make sure first step starts at 0;
if self.use_first_reflection_RI_loss:
# the initial value needs a 4th channel, the RI;
r_before_sample = tf.concat([r_before_sample,
self.n_back * tf.ones((self.data_num_th_gathered * self.batch_size, 1))],
axis=1)
initial_value = (r_before_sample[None, :, :] + # need to expand r_before_sample for initial value;
0 * scan_step_first) # initializer not included in output of tf.scan, but shape needs to match
# ^assume background RI;
self.propped = tf.scan(linear_step, dummy, initial_value, swap_memory=True)
# shape: # num_step, z_downsamp, data_num_th * batch_size, 3/4
if self.use_first_reflection_RI_loss:
self.propped = tf.reshape(self.propped, [num_step * self.z_downsamp, -1, 4]) # reshape is interleaving;
else:
self.propped = tf.reshape(self.propped, [num_step * self.z_downsamp, -1, 3]) # reshape is interleaving;
# shape: # ~numz, data_num_th * batch_size, 3/4
self.propped = tf.transpose(self.propped, (1, 0, 2))
# shape: # data_num_th * batch_size, ~numz, 3/4
self.propped = self.propped[:, :self.data_num_z, :] # let number of points in path match pixels in A-scan;
# global shift:
if self.use_first_reflection_RI_loss:
self.RI_path = self.propped[:, :, 3]
self.propped = self.propped[:, :, :3]
# unpack for convenience:
self.x_path, self.y_path, self.z_path = [unpacked[..., 0] for unpacked in tf.split(self.propped, 3, axis=2)]
def _propagate_rays_constant_RI(self, r_before_sample, u_before_sample):
# this can be used for registering a constant-index phantom;
# avoids the more expensive tf.scan loop, which would be overkill if your RI map is flat;
# due to accumulation of numerical error, this function doesn't give exactly the same result as propagate_rays,
# but since the result is rounded to pixels in backprojection, it's usually fine;
# scaled np.arange does the straightline rayprop through homogeneous medium:
paths = self.step / self.n_back * (np.arange(self.data_num_z, dtype=np.float32)[None, :, None] + 1)
self.propped = r_before_sample[:, None, :] + paths * u_before_sample[:, None, :]
# shape: # data_num_th * batch_size, numz, 3
# unpack for convenience:
self.x_path, self.y_path, self.z_path = [unpacked[..., 0] for unpacked in tf.split(self.propped, 3, axis=2)]
def _backproject_and_predict(self, Ascan_batch, dither_coords, assign_update_recon=True, use_FBP=False,
only_backproject=False):
# assign_update_recon: controls whether to use the .assign() mechanism to update the reconstruction (specified
# via update_gradient option in the gradient_update function);
# only_backproject: if true, don't bother with forward prediction and just return recon and normalize tensors;
# swap axes because it's more convenient to think of z as normal to the sample surface:
self.x_path, self.y_path, self.z_path = self.z_path, self.x_path, self.y_path
self.tensors_to_track['x_path'] = self.x_path
self.tensors_to_track['y_path'] = self.y_path
self.tensors_to_track['z_path'] = self.z_path
# stratified sampling, so flatten out;
Ascan_batch = Ascan_batch - self.train_var_dict['Ascan_background'][None, None, :]
if use_FBP:
A_fft = tf.signal.fft(tf.cast(Ascan_batch, dtype=tf.complex64)) # tf.fft operates on last dim
Ascan_batch_filtered = tf.math.real(tf.signal.ifft(A_fft * self.FBP_filter[None, None, :]))
else:
Ascan_batch_filtered = Ascan_batch
# if we want to reduce the A-scan range:
if self.z_start is not None:
if self.z_end is not None:
self.data_num_z_sliced = self.z_end - self.z_start
self.x_path = self.x_path[:, self.z_start:self.z_end]
self.y_path = self.y_path[:, self.z_start:self.z_end]
self.z_path = self.z_path[:, self.z_start:self.z_end]
Ascan_batch_filtered = Ascan_batch_filtered[:, :, self.z_start:self.z_end]
if use_FBP: # Ascan_batch and Ascan_batch_filtered are different;
Ascan_batch = Ascan_batch[:, :, self.z_start:self.z_end]
else: # here, they're the same;
Ascan_batch = Ascan_batch_filtered
else:
self.data_num_z_sliced = self.data_num_z - self.z_start
self.x_path = self.x_path[:, self.z_start:]
self.y_path = self.y_path[:, self.z_start:]
self.z_path = self.z_path[:, self.z_start:]
Ascan_batch_filtered = Ascan_batch_filtered[:, :, self.z_start:]
if use_FBP: # Ascan_batch and Ascan_batch_filtered are different;
Ascan_batch = Ascan_batch[:, :, self.z_start:]
else: # here, they're the same;
Ascan_batch = Ascan_batch_filtered
else:
if self.z_end is not None:
self.data_num_z_sliced = self.z_end
self.x_path = self.x_path[:, :self.z_end]
self.y_path = self.y_path[:, :self.z_end]
self.z_path = self.z_path[:, :self.z_end]
Ascan_batch_filtered = Ascan_batch_filtered[:, :, :self.z_end]
if use_FBP: # Ascan_batch and Ascan_batch_filtered are different;
Ascan_batch = Ascan_batch[:, :, :self.z_end]
else: # here, they're the same;
Ascan_batch = Ascan_batch_filtered
else:
# use full;
self.data_num_z_sliced = self.data_num_z
Ascan_batch_filtered = tf.reshape(Ascan_batch_filtered, [-1])
if use_FBP: # Ascan_batch and Ascan_batch_filtered are different;
Ascan_batch = tf.reshape(Ascan_batch, [-1])
else: # here, they're the same;
Ascan_batch = Ascan_batch_filtered
# convert to pixel units from physical spatial units:
recon_size_dims = tf.cast(self.recon_shape, tf.float32)
x_float = ((self.x_path / self.recon_fov[0]) + .5) * recon_size_dims[0]
y_float = ((self.y_path / self.recon_fov[1]) + .5) * recon_size_dims[1]
z_float = ((self.z_path / self.recon_fov[2]) + .5) * recon_size_dims[2]
x_float = tf.reshape(x_float, [-1])
y_float = tf.reshape(y_float, [-1])
z_float = tf.reshape(z_float, [-1])
# remove points that don't fall in the FOV:
in_fov_x = tf.logical_and(tf.greater_equal(x_float, 0), tf.less(x_float, recon_size_dims[0]))
in_fov_y = tf.logical_and(tf.greater_equal(y_float, 0), tf.less(y_float, recon_size_dims[0]))
in_fov_z = tf.logical_and(tf.greater_equal(z_float, 0), tf.less(z_float, recon_size_dims[0]))
in_fov = tf.logical_and(tf.logical_and(in_fov_x, in_fov_y), in_fov_z)
x_float = tf.boolean_mask(x_float, in_fov)
y_float = tf.boolean_mask(y_float, in_fov)
z_float = tf.boolean_mask(z_float, in_fov)
Ascan_batch_filtered = tf.boolean_mask(Ascan_batch_filtered, in_fov)
if use_FBP: # Ascan_batch and Ascan_batch_filtered are different;
Ascan_batch = tf.boolean_mask(Ascan_batch, in_fov)
else: # here, they're the same;
Ascan_batch = Ascan_batch_filtered
if dither_coords:
raise Exception('dither_coords not yet implemented')
# trilinear interp (for backprojection/scattering and gathering):
x_floor = tf.floor(x_float)
x_ceil = x_floor + 1
z_floor = tf.floor(z_float)
z_ceil = z_floor + 1
y_floor = tf.floor(y_float)
y_ceil = y_floor + 1
fx = x_float - x_floor
cx = x_ceil - x_float
fz = z_float - z_floor
cz = z_ceil - z_float
fy = y_float - y_floor
cy = y_ceil - y_float
# cast into integers:
x_floor = tf.cast(x_floor, dtype=tf.int32)
x_ceil = tf.cast(x_ceil, dtype=tf.int32)
z_floor = tf.cast(z_floor, dtype=tf.int32)
z_ceil = tf.cast(z_ceil, dtype=tf.int32)
y_floor = tf.cast(y_floor, dtype=tf.int32)
y_ceil = tf.cast(y_ceil, dtype=tf.int32)
# generate the coordinates of the projection cells:
xyzfff = tf.stack([x_floor, y_floor, z_floor], 1)
xyzfcf = tf.stack([x_floor, y_ceil, z_floor], 1)
xyzcff = tf.stack([x_ceil, y_floor, z_floor], 1)
xyzccf = tf.stack([x_ceil, y_ceil, z_floor], 1)
xyzffc = tf.stack([x_floor, y_floor, z_ceil], 1)
xyzfcc = tf.stack([x_floor, y_ceil, z_ceil], 1)
xyzcfc = tf.stack([x_ceil, y_floor, z_ceil], 1)
xyzccc = tf.stack([x_ceil, y_ceil, z_ceil], 1)
# gaussian-weighted factors (these are for interp_project and for the gathering stage after projection):
fx = tf.exp(-fx ** 2 / 2. / self.sig_proj ** 2)
fy = tf.exp(-fy ** 2 / 2. / self.sig_proj ** 2)
fz = tf.exp(-fz ** 2 / 2. / self.sig_proj ** 2)
cx = tf.exp(-cx ** 2 / 2. / self.sig_proj ** 2)
cy = tf.exp(-cy ** 2 / 2. / self.sig_proj ** 2)
cz = tf.exp(-cz ** 2 / 2. / self.sig_proj ** 2)
# reconstruct:
# compute the interpolated normalize tensor here:
# _8 is used because for 3D, trilinear interpolation uses 8 cubes
xyz_8 = tf.concat([xyzfff, xyzfcf, xyzcff, xyzccf, xyzffc, xyzfcc, xyzcfc, xyzccc], 0)
# compute the interpolated backprojection:
# it might be more efficient to use broadcasting for this:
Ascan_8 = tf.concat([
Ascan_batch_filtered * fx * fy * fz,
Ascan_batch_filtered * fx * cy * fz,
Ascan_batch_filtered * cx * fy * fz,
Ascan_batch_filtered * cx * cy * fz,
Ascan_batch_filtered * fx * fy * cz,
Ascan_batch_filtered * fx * cy * cz,
Ascan_batch_filtered * cx * fy * cz,
Ascan_batch_filtered * cx * cy * cz
], 0)
# projection weights (perhaps could be more efficient to create Ascans_8 from this):
w_8 = tf.concat([
fx * fy * fz,
fx * cy * fz,
cx * fy * fz,
cx * cy * fz,
fx * fy * cz,
fx * cy * cz,
cx * fy * cz,
cx * cy * cz
], 0)
if only_backproject:
# this is for generating a reconstruction without momentum, so that each A-scan can contribute equally
normalize = tf.scatter_nd(xyz_8, w_8, self.recon_shape)
recon = tf.scatter_nd(xyz_8, Ascan_8, self.recon_shape)
return recon, normalize
# update recon with moving average:
# gather values at recon_previous using the NEW coordinates:
recon_previous = self.non_train_dict['recon_previous']
self.Ascan_8_previous = tf.gather_nd(recon_previous, xyz_8) * w_8 # with appropriate weighting by w_8;
if self.correct_momentum_bias:
assert not self.correct_momentum_bias_in_loss
self.Ascan_8_previous *= (1 - (1 - self.momentum) ** self.iter) # the reconstruction is unbiased, but we