-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscouting.py
309 lines (228 loc) · 10.3 KB
/
scouting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import pandas as pd
pd.set_option('display.max_rows', None, 'display.max_columns', None)
df = pd.read_csv('data/2791_2019dar.csv')
# Display a list of the teams present in the data
team_nums = df['Team Number']
team_nums = team_nums.drop_duplicates()
print('Available Teams:')
print(team_nums.to_string(index=False))
# Calculate the average score of a specified team
# Parameter team_num: team number
def avg_score(team_num):
# Creates a new dataframe containing only data for team team_num
teamdf = df[df['Team Number'] == team_num]
total_score = 0
for i in teamdf.index:
# Hab Line Cross
if teamdf['Hab Line 1/0'][i] == 1:
startpos = teamdf['Starting Position'][i]
if startpos == 'L1' or startpos == 'M' or startpos == 'R1':
total_score += 3
elif startpos == 'L2' or startpos == 'R2':
total_score += 6
# Hatch Panels
total_score += 2 * (teamdf['Auto # H Ship Side'][i] + teamdf['Auto # H Ship Front'][i] +
teamdf['Tele H Ship'][i] + teamdf['Tele Rocket H L1'][i] + teamdf['Tele Rocket H L2'][i] +
teamdf['Tele Rocket H L3'][i])
if teamdf['Auto H Rkt Lvl'][i] > 0:
total_score += 2
if teamdf['Auto H Rkt Lvl [2]'][i] > 0:
total_score += 2
# Cargo
total_score += 3 * (teamdf['Auto # C Ship Side'][i] + teamdf['Tele C Ship'][i] + teamdf['Tele Rocket C L1'][i] +
teamdf['Tele Rocket C L2'][i] + teamdf['Tele Rocket C L3'][i])
if teamdf['Auto C Rkt Lvl'][i] > 0:
total_score += 3
# Fouls
if teamdf['Fouls? 0/1'][i] == 1:
total_score -= 7
# Hab Climb Bonus
level = teamdf['Highest success'][i]
if level == 1:
total_score += 3
elif level == 2:
total_score += 6
elif level == 3:
total_score += 12
return total_score / len(teamdf.index)
# Calculate a team's average score achieved during sandstorm
# Parameter team_num: team number
def sandstorm_score(team_num):
# Creates a new dataframe containing only data for team team_num
teamdf = df[df['Team Number'] == team_num]
total_score = 0
for i in teamdf.index:
# Hab Line Cross
if teamdf['Hab Line 1/0'][i] == 1:
startpos = teamdf['Starting Position'][i]
if startpos == 'L1' or startpos == 'M' or startpos == 'R1':
total_score += 3
elif startpos == 'L2' or startpos == 'R2':
total_score += 6
# Hatch Panels
total_score += 2 * (teamdf['Auto # H Ship Side'][i] + teamdf['Auto # H Ship Front'][i])
if teamdf['Auto H Rkt Lvl'][i] > 0:
total_score += 2
if teamdf['Auto H Rkt Lvl [2]'][i] > 0:
total_score += 2
# Cargo
total_score += 3 * (teamdf['Auto # C Ship Side'][i])
if teamdf['Auto C Rkt Lvl'][i] > 0:
total_score += 3
return total_score / len(teamdf.index)
# Calculate a team's average score achieved during teleop
# Parameter team_num: team number
def teleop_score(team_num):
# Creates a new dataframe containing only data for team team_num
teamdf = df[df['Team Number'] == team_num]
total_score = 0
for i in teamdf.index:
# Hatch Panels
total_score += 2 * (teamdf['Tele H Ship'][i] + teamdf['Tele Rocket H L1'][i] + teamdf['Tele Rocket H L2'][i] +
teamdf['Tele Rocket H L3'][i])
# Cargo
total_score += 3 * (teamdf['Tele C Ship'][i] + teamdf['Tele Rocket C L1'][i] + teamdf['Tele Rocket C L2'][i] +
teamdf['Tele Rocket C L3'][i])
# Fouls
if teamdf['Fouls? 0/1'][i] == 1:
total_score -= 7
# Hab Climb Bonus
level = teamdf['Highest success'][i]
if level == 1:
total_score += 3
elif level == 2:
total_score += 6
elif level == 3:
total_score += 12
return total_score / len(teamdf.index)
# Determine the average amount of defense played by a specified team
def defense_amount(team_num):
# Creates a new dataframe containing only data for team team_num
teamdf = df[df['Team Number'] == team_num]
defense_amount = 0
for i in teamdf.index:
defense_amount += teamdf['Def pl amt'][i]
return defense_amount / len(teamdf.index)
# Calculate the average quality of defense played of a specified team
def defense_quality(team_num):
# Creates a new dataframe containing only data for team team_num
teamdf = df[df['Team Number'] == team_num]
total_quality = 0
counter = 0
for i in teamdf.index:
if teamdf['Def pl quality'][i] > 0:
total_quality += teamdf['Def pl quality'][i]
counter += 1
if counter == 0:
return 0
else:
return total_quality / counter
# Determine how often a specified team's bot dies
def dead_score(team_num):
# Creates a new dataframe containing only data for team team_num
teamdf = df[df['Team Number'] == team_num]
dead_score = 0
for i in teamdf.index:
dead_value = teamdf['Dead 0-3'][i]
if dead_value == 1:
dead_score += 2
elif dead_value == 2:
dead_score += 7
elif dead_value == 3:
dead_score += 15
return dead_score / len(teamdf.index)
def view_dashboard(team_num):
output = '\nTeam ' + str(team_num) + ' Stats:\n'
# Average Score
output += '\n\tAverage Score: ' + str(avg_score(team_num)) + ' points\n'
# Average Score during Sandstorm
output += '\n\tAverage Score During Sandstorm: ' + str(sandstorm_score(team_num))+ ' points\n'
# Average Score during Teleop
output += '\n\tAverage Score During Teleop: ' + str(teleop_score(team_num))+ ' points\n'
# Defense Amount
output += '\n\tDefense Amount: '+ str(defense_amount(team_num)) + '\n'
# Defense Quality
dq = defense_quality(team_num)
output += '\n\tDefense Quality: '
if dq == 4:
output += 'Flawless, ' + str(dq) + '\n'
elif dq >= 3:
output += 'Excellent, ' + str(dq) + '\n'
elif dq >= 2:
output += 'Decent, ' + str(dq) + '\n'
elif dq >= 1:
output += 'Poor, ' + str(dq) + '\n'
elif dq > 0:
output += 'Terrible, ' + str(dq) + '\n'
elif dq == 0:
output += 'Never played defense\n'
# Dead Score
output += '\n\tDead Score: '+ str(dead_score(team_num))+ '\n'
print('________________________________________________________________________\n'
+ output +
'________________________________________________________________________\n')
def choose_members():
# Lists to contain the stats for all teams
scores = []
sandstorm_scores = []
teleop_scores = []
defense_amounts = []
defense_qualities = []
dead_scores = []
# team_nums is a existing Series containing team numbers
for i in team_nums.index:
scores.append(avg_score(team_nums[i]))
sandstorm_scores.append(sandstorm_score(team_nums[i]))
teleop_scores.append(teleop_score(team_nums[i]))
defense_amounts.append(defense_amount(team_nums[i]))
defense_qualities.append(defense_quality(team_nums[i]))
dead_scores.append(dead_score(team_nums[i]))
df1 = pd.DataFrame({'Team Number': team_nums, 'Average Score': scores})
df2 = pd.DataFrame({'Team Number': team_nums, 'Sandstorm Score': sandstorm_scores})
df3 = pd.DataFrame({'Team Number': team_nums, 'Teleop Score': teleop_scores})
df4 = pd.DataFrame({'Team Number': team_nums, 'Defense Amount': defense_amounts})
df5 = pd.DataFrame({'Team Number': team_nums, 'Defense Quality': defense_qualities})
df6 = pd.DataFrame({'Team Number': team_nums, 'Dead Score': dead_scores})
# Sort the dataframes
df1 = df1.sort_values(by=['Average Score'], ascending=False)
df2 = df2.sort_values(by=['Sandstorm Score'], ascending=False)
df3 = df3.sort_values(by=['Teleop Score'], ascending=False)
df4 = df4.sort_values(by=['Defense Amount'], ascending=False)
df5 = df5.sort_values(by=['Defense Quality'], ascending=False)
df6 = df6.sort_values(by=['Dead Score'], ascending=False)
print('________________________________________________________________________\n')
print(df1.head(10).to_string(index=False))
print('________________________________________________________________________\n')
print(df2.head(10).to_string(index=False))
print('________________________________________________________________________\n')
print(df3.head(10).to_string(index=False))
print('________________________________________________________________________\n')
print(df4.head(10).to_string(index=False))
print('________________________________________________________________________\n')
print(df5.head(10).to_string(index=False))
print('________________________________________________________________________\n')
print(df6.head(10).to_string(index=False))
print('________________________________________________________________________\n')
# UI
print('________________________________________________________________________\n')
while True:
choice = int(input("1 - View analytics dashboard for a specified team. \n"
"2 - View sorted lists of teams to assist in choosing alliance members. \n"
"3 - Exit the program. \n\n"
"Enter '1', '2', or '3' to select an option: "))
if choice == 1:
team_input = int(input('\nEnter the team number of the team you wish to analyze: '))
while True:
team_df = df[df['Team Number'] == team_input]
if len(team_df.index) == 0:
team_input = int(input('\nThe team number you have entered was not found in the database. Please enter a valid team number: '))
else:
break
view_dashboard(team_input)
elif choice == 2:
choose_members()
elif choice == 3:
break
else:
print("________________________________________________________________________\n\n"
"Please enter '1', '2', or '3'!\n")