-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify.py
85 lines (78 loc) · 2.57 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import os
import sys
if __name_ == '__main__':
paper = sys.arvg[1] == 'paper'
if paper:
sub_path = 'paper'
else:
sub_path = 'more_filters'
data_dir = os.environ.get('DEEPCR_DIR')
data_dir = os.path.join(data_dir,sub_path,'test_segmented_data.npy')
print(data_dir)
test_set = np.load(data_dir, allow_pickle = True)[()]
keys = list(test_set.keys())
eg_field = {}
globular = {}
resolved_gal = {}
i = 0
if paper:
for k in keys:
idx = k.index('_')
k2 = k[:idx]
if '44' in k2:
eg_field[k] = test_set[k]
i+=1
elif '06' in k2 or '09' in k2:
globular[k] = test_set[k]
i+=1
elif '28' in k2:
resolved_gal[k] = test_set[k]
i+=1
else:
for k in keys:
idx = k.index('_')
k2 = k[:idx]
if 'j96q' in k2:
resolved_gal[k] = test_set[k]
i+=1
elif 'jcdm' in k2:
resolved_gal[k] = test_set[k]
i+=1
elif 'jb16' in k2:
globular[k] = test_set[k]
i+=1
elif 'jc3f' in k2:
eg_field[k] = test_set[k]
i+=1
elif 'j6lp' in k2:
globular[k] = test_set[k]
i+=1
elif 'jbfl' in k2:
eg_field[k] = test_set[k]
i+=1
elif 'jc8m' in k2:
eg_field[k] = test_set[k]
i+=1
elif 'jcoy' in k2:
resolved_gal[k] = test_set[k]
i+=1
elif 'j8xi' in k2:
eg_field[k] = test_set[k]
i+=1
elif 'jcnw' in k2:
resolved_gal[k] = test_set[k]
i+=1
elif 'j9l9' in k2:
globular[k] = test_set[k]
i+=1
elif 'jbqj' in k2:
globular[k] = test_set[k]
i+=1
assert i == len(keys)
save_path_eg = os.path.join(os.environ.get('DEEPCR_DIR'),sub_path,'categorized_testing','test_eg_field.npy')
save_path_glob = os.path.join(os.environ.get('DEEPCR_DIR'),sub_path,'categorized_testing','test_globular_cluster.npy')
save_path_gal = os.path.join(os.environ.get('DEEPCR_DIR'),sub_path,'categorized_testing','test_resolved_gal.npy')
np.save(save_path_gal,np.array(resolved_gal))
np.save(save_path_glob,np.array(globular))
np.save(save_path_eg,np.array(eg_field))