Skip to content

Latest commit

 

History

History
99 lines (77 loc) · 2.34 KB

File metadata and controls

99 lines (77 loc) · 2.34 KB
title tags author description
0693.Binary Number with Alternating Bits
Medium, Bit Manipulation
Kimi Tsai <[email protected]>

題目

Given a positive integer, check whether it has alternating bits: namely, if two adjacent bits will always have different values.

Example 1:

Input: 5
Output: True
Explanation:
The binary representation of 5 is: 101

Example 2:

Input: 7
Output: False
Explanation:
The binary representation of 7 is: 111.

Example 3:

Input: 11
Output: False
Explanation:
The binary representation of 11 is: 1011.

Example 4:

Input: 10
Output: True
Explanation:
The binary representation of 10 is: 1010.

題目大意

給定一個正整數,檢查他是否為交替位二進制數:換句話說,就是他的二進制數相鄰的兩個位數永不相等。

解題思路

  • 判斷一個數的二進制位相鄰兩個數是不相等的,即 0101 交叉間隔的,如果是,輸出 true。這一題有多種做法,最簡單的方法就是直接模擬。比較巧妙的方法是通過位運算,合理構造特殊數據進行位運算到達目的。 010101 構造出 101010 兩者相互 & 位運算以後就為 0,因為都“插空”了。

提示:

1 <= n <= 2^31 - 1

來源

解答

https://github.com/kimi0230/LeetcodeGolang/blob/master/Leetcode/0693.Binary-Number-with-Alternating-Bits/Binary-Number-with-Alternating-Bits.go

package binarynumberwithalternatingbits

// 暴力解 O(n)
func hasAlternatingBits(n int) bool {
	for n > 0 {
		preBit := n & 1
		n = n / 2
		curBit := n & 1
		if curBit == preBit {
			return false
		}
	}
	return true
}

// 數學解
func hasAlternatingBits2(n int) bool {
	/*
		n=5
		n=				1 0 1
		n >> 1			0 1 0
		n^(n>>1)		1 1 1  (XOR 不同時得1)
		n               1 1 1
		n+1			  1 0 0 0
		n & (n+1)	    0 0 0

		n=7
		n=				1 1 1
		n >> 1			0 1 1
		n^(n>>1)		1 0 0  (XOR 不同時得1)
		n               1 0 0
		n+1			    1 0 1
		n & (n+1)	    1 0 0
	*/
	n = n ^ (n >> 1)
	result := n & (n + 1)
	return result == 0
}