-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmisc.py
305 lines (280 loc) · 11.5 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
from typing import Optional
import numpy as np
from peft import LoraConfig, TaskType, get_peft_model
from transformers import (AutoConfig, AutoModelForPreTraining,
AutoModelForSequenceClassification, AutoTokenizer)
from custom_datasets import (NextTokenDataloader, UnifiedDatasetInterface, create_boston_datatset,
create_cifar, create_energy_datatset, create_imbd,
create_fasion_mnist, create_housing_datatset,
create_mnist, create_mnli, create_qqp, create_sst)
from trainer_configs import DefaultConfig
from models._2c2d import _2c2d
from models._3c3d import _3c3d
from models.gpt import GPT, GPTConfig, GPTTinyConfig
from models.mlp import MLP
from models.resnet import ResNet
from models.vae import VAE
from trainer_configs import *
from overshoot.sgd_overshoot import SGDO
from overshoot.adamw_overshoot_delayed import AdamO as OvershootAdamW_delayed
from optimizers_old.backups2.sgdo_adaptive import SGDO as SGDO_adaptive
from optimizers_old.backups2.adamw_overshoot_replication import AdamW as OvershootAdamW_replication
from optimizers_old.backups2.adamw_overshoot_full_approximation import AdamW as OvershootAdamW_full_approximation
from optimizers_old.backups2.adamw_overshoot_denom_approximation import AdamW as OvershootAdamW_denom_approximation
from optimizers_old.backups2.adamw_overshoot_adaptive import AdamW as OvershootAdamW_adaptive
supported_datasets = [
"mnist",
"f-mnist",
"cifar10",
"cifar100",
"housing",
"sst",
"qqp",
"mnli",
"shakespear",
]
supported_models = [
"mlp",
"2c2d",
"3c3d",
"resnet18" "resnet50" "vae",
"gpt",
"roberta_hf",
"bloom_hf",
"minilm",
]
optimizers_map = {
"sgd": torch.optim.SGD,
"sgd_momentum": torch.optim.SGD,
"sgd_nesterov": torch.optim.SGD,
"sgd_overshoot": SGDO,
"sgd_adaptive": SGDO_adaptive,
"adam": torch.optim.Adam,
"adamW": torch.optim.AdamW,
"adam_zero": torch.optim.Adam,
"adamW_zero": torch.optim.AdamW,
"nadam": torch.optim.NAdam,
"adamW_overshoot_replication": OvershootAdamW_replication,
"adamW_overshoot_full_approximation": OvershootAdamW_full_approximation,
"adamW_overshoot_denom_approximation": OvershootAdamW_denom_approximation,
"adamW_overshoot_delayed": OvershootAdamW_delayed,
"adamW_overshoot_adaptive": OvershootAdamW_adaptive,
"rmsprop": torch.optim.RMSprop,
}
def init_dataset(dataset_name: str, model_name: Optional[str], seed: Optional[int] = None):
if dataset_name == "mnist":
return create_mnist(model_name == "vae")
elif dataset_name == "cifar10":
return create_cifar(10)
elif dataset_name == "cifar100":
return create_cifar(100)
elif dataset_name == "boston":
return create_boston_datatset(seed=seed if seed else 42)
elif dataset_name == "housing":
return create_housing_datatset()
# return create_housing_datatset(seed=seed if seed else 42)
elif dataset_name == "energy":
return create_energy_datatset()
elif dataset_name == "f-mnist":
return create_fasion_mnist(model_name == "vae")
assert model_name
model_map = {
"gpt_hf": "openai-community/gpt2",
"gpt": "openai-community/gpt2",
"gpt_tiny": "openai-community/gpt2",
"bert_hf": "google-bert/bert-base-uncased",
"roberta_hf": "FacebookAI/roberta-base",
"xlm_roberta_hf": "FacebookAI/xlm-roberta-base",
"bloom_hf": "bigscience/bloom-560m",
"mdeberta_hf": "microsoft/mdeberta-v3-base",
"t5_hf": "google-t5/t5-base",
"minilm": "microsoft/MiniLM-L12-H384-uncased",
}
context_map = {
"gpt_hf": 1024,
"gpt": 1024,
"gpt_tiny": 256,
"bert_hf": 512,
"roberta_hf": 512,
"xlm_roberta_hf": 512,
"bloom_hf": 512,
"mdeberta_hf": 512,
"t5_hf": 512,
"minilm": 512,
}
tokenizer = AutoTokenizer.from_pretrained(model_map[model_name])
if (tokenizer.pad_token is None) and (tokenizer.eos_token is not None):
tokenizer.pad_token = tokenizer.eos_token
if dataset_name == "shakespear":
# return NextTokenDataloader(tokenizer, T=context_map[model_name], source_file="tiny_shakespear_")
return NextTokenDataloader(tokenizer, T=context_map[model_name], source_file="tiny_shakespear.txt")
elif dataset_name == "gutenberg":
return NextTokenDataloader(tokenizer, T=context_map[model_name], source_file="gutenberg_books_")
elif dataset_name == "sst":
return create_sst(tokenizer)
elif dataset_name == "qqp":
return create_qqp(tokenizer)
elif dataset_name == "imdb":
return create_imbd(tokenizer)
elif dataset_name == "mnli":
return create_mnli(tokenizer=tokenizer)
# TODO:
# elif dataset_name == "mmlu":
# return MMLUDataset(tokenizer=tokenizer)
else:
raise ValueError(f"Dataset {dataset_name} not found")
def init_model(model_name: str, datatset: UnifiedDatasetInterface, trainer_config: DefaultConfig):
model_map = {
"gpt_hf": "openai-community/gpt2",
"bert_hf": "google-bert/bert-base-uncased",
"roberta_hf": "FacebookAI/roberta-base",
"xlm_roberta_hf": "FacebookAI/xlm-roberta-base",
"bloom_hf": "bigscience/bloom-560m",
"mdeberta_hf": "microsoft/mdeberta-v3-base",
"t5_hf": "google-t5/t5-base",
"minilm": "microsoft/MiniLM-L12-H384-uncased",
}
n_outputs = datatset.n_outputs()
if model_name == "gpt":
return GPT(GPTConfig(vocab_size=50304))
if model_name == "gpt_tiny":
return GPT(GPTTinyConfig(vocab_size=50304))
elif model_name == "mlp":
assert hasattr(trainer_config, "mlp_hidden_size")
inpt_shape = datatset[0]["x"].shape
return MLP(inpt_shape, n_outputs, datatset.is_classification(), hidden_layers=trainer_config.mlp_hidden_size)
elif model_name == "2c2d":
inpt_shape = datatset[0]["x"].shape
return _2c2d(inpt_shape, n_outputs)
elif model_name == "3c3d":
inpt_shape = datatset[0]["x"].shape
return _3c3d(inpt_shape, n_outputs)
elif model_name.startswith("resnet"):
return ResNet(n_outputs, type=model_name)
elif model_name == "vae":
return VAE()
elif model_name in model_map:
model_name = model_map[model_name]
config = AutoConfig.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Keep dropout
# if "gpt" in model_name:
# config.resid_pdrop = 0
# config.embd_pdrop = 0
# config.attn_pdrop = 0
# else:
# config.hidden_dropout_prob = 0.0 # Default is 0.1
# config.attention_probs_dropout_prob = 0.0 # Default is 0.1
config.ignore_mismatched_sizes = True
if isinstance(datatset, NextTokenDataloader):
model = AutoModelForPreTraining.from_config(config) # from scratch
else:
# config.num_labels = 3 if isinstance(datatset, MNLIDataset) else 2
config.num_labels = n_outputs
model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config)
if (tokenizer.pad_token is None) and (tokenizer.eos_token is not None):
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.get_vocab()[tokenizer.pad_token]
if trainer_config.use_peft:
peft_config = LoraConfig(task_type=TaskType.SEQ_CLS, r=6, lora_dropout=0.1)
model = get_peft_model(model, peft_config)
print("Using peft:")
model.print_trainable_parameters()
return model
else:
raise ValueError(f"Model {model_name} not found")
def get_gpu_stats(n_gpus: int = 0):
gpu_info = ""
for gpu_index in range(n_gpus):
max_vram = torch.cuda.memory_reserved(gpu_index) / (1024 * 1024 * 1024)
utilization = torch.cuda.utilization(gpu_index)
gpu_info += f" | vram{gpu_index} {max_vram:.2f}GB | util{gpu_index} {utilization:.2f}%"
return gpu_info
def compute_model_distance(ref_model: torch.Tensor, gradient_models: list[torch.Tensor], decay_factor: float) -> float:
assert 0 < decay_factor < 1
return float(sum(
[np.linalg.norm(ref_model - g_m) * decay_factor**i for i, g_m in enumerate(reversed(gradient_models))]
))
def get_model_size(model: torch.nn.Module):
param_size = sum(p.numel() for p in model.parameters() if p.requires_grad) * 4 # Assuming float32
buffer_size = sum(p.numel() for p in model.buffers()) * 4
size_all_mb = (param_size + buffer_size) / 1024 / 1024
return round(size_all_mb, 2)
def create_optimizer(opt_name: str, param_groups, overshoot_factor: float, lr: float, config) -> torch.optim.Optimizer:
if opt_name == "nadam":
opt = optimizers_map[opt_name](
param_groups,
lr=lr,
betas=(config.adam_beta1, config.adam_beta2),
momentum_decay=1000000000000000000000000, # Turn of momentum decay
weight_decay=config.weight_decay,
decoupled_weight_decay=True,
foreach=config.optimizer_foreach,
)
elif opt_name == "adamW_overshoot_delayed":
opt = optimizers_map[opt_name](
param_groups,
lr=lr,
betas=(config.adam_beta1, config.adam_beta2),
weight_decay=config.weight_decay,
overshoot=overshoot_factor,
overshoot_delay=config.overshoot_delay,
foreach=config.optimizer_foreach,
)
elif opt_name == "adamW_overshoot_adaptive":
opt = optimizers_map[opt_name](
param_groups,
lr=lr,
betas=(config.adam_beta1, config.adam_beta2),
weight_decay=config.weight_decay,
cosine_target=config.target_cosine_similarity,
foreach=config.optimizer_foreach,
)
elif opt_name.startswith("adamW_overshoot"):
opt = optimizers_map[opt_name](
param_groups,
lr=lr,
betas=(config.adam_beta1, config.adam_beta2),
weight_decay=config.weight_decay,
overshoot=overshoot_factor,
foreach=config.optimizer_foreach,
)
elif "adam" in opt_name:
config.adam_beta1 *= "zero" not in opt_name
opt = optimizers_map[opt_name](
param_groups,
lr=lr,
betas=(config.adam_beta1, config.adam_beta2),
weight_decay=config.weight_decay,
foreach=config.optimizer_foreach,
)
elif "sgd_adaptive" in opt_name:
opt = optimizers_map[opt_name](
param_groups,
lr=lr,
momentum=config.sgd_momentum,
weight_decay=config.weight_decay,
cosine_target=config.target_cosine_similarity,
foreach=config.optimizer_foreach,
)
elif "sgd_overshoot" in opt_name:
opt = optimizers_map[opt_name](
param_groups,
lr=lr,
momentum=config.sgd_momentum,
weight_decay=config.weight_decay,
overshoot=overshoot_factor,
foreach=config.optimizer_foreach,
)
elif "sgd" in opt_name:
opt = optimizers_map[opt_name](
param_groups,
lr=lr,
momentum=0 if opt_name == "sgd" else config.sgd_momentum,
weight_decay=config.weight_decay,
nesterov="nesterov" in opt_name,
foreach=config.optimizer_foreach,
)
else:
raise Exception(f"Optimizer {opt_name} not recognized.")
return opt