-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetplotbrain_seed.py
367 lines (287 loc) · 12.1 KB
/
netplotbrain_seed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# In[1]:
import matplotlib.colors as colors
import templateflow.api as tf
import nibabel as nib
import numpy as np
import pandas as pd
from matplotlib import cm
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
from nilearn import plotting
from nilearn import datasets, surface
import scipy
from multipy.fdr import lsu
from bids import BIDSLayout
import netplotbrain
data_dir = './bids/'
conn_dir = './bids/derivatives/connectivity/'
file_dir = './datasets/'
fig_dir = './figures/publication/'
analysis_dir = './analysis/nbs_results/100/'
map_dir = './atlases/'
# Grab bids structure
layout = BIDSLayout(data_dir)
# Add connectivity directory
layout.add_derivatives(conn_dir)
# Read MR-files
files = layout.derivatives['connectivity'].get(extension='.tsv', space = 'MNI152NLin2009cAsym', atlas = 'HOSubCortSchaefer2018100Parcels7Networks')
conn_list = list(np.zeros(len(files)))
counter = 0
fil_mrnumber = []
control_df = []
surg_df = []
cons_df = []
all_list = {}
surg_names = []
control_names = []
cons_names = []
all_names = {}
dataset = pd.read_csv(file_dir + 'b2b_dataset_20230626.csv', sep='\t')
atlas = pd.read_csv(map_dir + 'surfacemap.tsv' , sep='\t')
for file in files:
entities = dict(file.entities)
file_df = pd.read_csv(file.path, sep='\t', index_col=[0])
idx = np.where(dataset['mr_brain'] == int(entities['subject']))
idx = int(idx[0])
group = dataset['Group'][idx]
if group == 'Surgery':
surg_df.append(file_df)
surg_names.append(entities['subject'])
elif group =='Control':
control_df.append(file_df)
control_names.append(entities['subject'])
elif group =='Conservative':
cons_df.append(file_df)
cons_names.append(entities['subject'])
surg_nodes = np.zeros((len(surg_df), len(file_df),len(file_df)))
cons_nodes = np.zeros((len(cons_df), len(file_df),len(file_df)))
control_nodes = np.zeros((len(control_df),len(file_df),len(file_df)))
for i in range(len(surg_df)):
surg_arr = np.array(surg_df[i])
surg_arr[surg_arr==1] = np.nan
surg_arr = np.arctanh(surg_arr)
surg_nodes[i,:,:] = surg_arr
for i in range(len(control_df)):
control_arr = np.array(control_df[i])
control_arr[control_arr==1] = np.nan
control_arr = np.arctanh(control_arr)
control_nodes[i,:,:] = control_arr
for i in range(len(cons_df)):
cons_arr = np.array(cons_df[i])
cons_arr[cons_arr==1] = np.nan
cons_arr = np.arctanh(cons_arr)
cons_nodes[i,:,:] = cons_arr
#Left seed = 15, with idx[0]. Hence, left seed becomes 14.
#Right seed = 66 with idx[0]. Hence, right seed becomes 65
seed_surg_lh = surg_nodes[:,14,:].transpose()
seed_surg_rh = surg_nodes[:,65,:].transpose()
seed_cont_lh = control_nodes[:,14,:].transpose()
seed_cont_rh = control_nodes[:,65,:].transpose()
seed_cons_lh = cons_nodes[:,14,:].transpose()
seed_cons_rh = cons_nodes[:,65,:].transpose()
t_val_surgcons_lh = np.zeros(len(seed_surg_lh))
p_val_surgcons_raw_lh = np.zeros(len(seed_surg_lh))
t_val_surgcons_rh = np.zeros(len(seed_surg_lh))
p_val_surgcons_raw_rh = np.zeros(len(seed_surg_lh))
t_val_surgcont_lh = np.zeros(len(seed_surg_lh))
p_val_surgcont_raw_lh = np.zeros(len(seed_surg_lh))
t_val_surgcont_rh = np.zeros(len(seed_surg_lh))
p_val_surgcont_raw_rh = np.zeros(len(seed_surg_lh))
t_val_conscont_lh = np.zeros(len(seed_surg_lh))
p_val_conscont_raw_lh = np.zeros(len(seed_surg_lh))
t_val_conscont_rh = np.zeros(len(seed_surg_lh))
p_val_conscont_raw_rh = np.zeros(len(seed_surg_lh))
for i in range(len(seed_surg_lh)):
#Surgery vs. Conservative
t_val_surgcons_lh[i] , p_val_surgcons_raw_lh[i] = scipy.stats.ttest_ind(seed_surg_lh[i], seed_cons_lh[i])
t_val_surgcons_rh[i] , p_val_surgcons_raw_rh[i] = scipy.stats.ttest_ind(seed_surg_rh[i], seed_cons_rh[i])
#Surgery vs. Control
t_val_surgcont_lh[i] , p_val_surgcont_raw_lh[i] = scipy.stats.ttest_ind(seed_surg_lh[i], seed_cont_lh[i])
t_val_surgcont_rh[i] , p_val_surgcont_raw_rh[i] = scipy.stats.ttest_ind(seed_surg_rh[i], seed_cont_rh[i])
#Conservative vs. Control
t_val_conscont_lh[i] , p_val_conscont_raw_lh[i] = scipy.stats.ttest_ind(seed_cons_lh[i], seed_cont_lh[i])
t_val_conscont_rh[i] , p_val_conscont_raw_rh[i] = scipy.stats.ttest_ind(seed_cons_rh[i], seed_cont_rh[i])
p_surgcons_adj_lh = p_val_surgcons_raw_lh.copy()
sig_p = lsu(p_val_surgcons_raw_lh, q=0.05)
sig_idx = np.where(sig_p==True)
surgcons_sigs_lh = atlas['name'][sig_idx[0]]
sig_sub = atlas['name'][sig_idx[0][10]]
arr = np.array(range(123))
res = np.delete(arr, sig_idx)
p_surgcons_adj_lh[res] = 0
p_surgcons_adj_lh[sig_idx] = 1
p_surgcons_adj_rh = p_val_surgcons_raw_rh.copy()
sig_p = lsu(p_val_surgcons_raw_rh, q=0.05)
sig_idx = np.where(sig_p==True)
surgcons_sigs_rh = atlas['name'][sig_idx[0]]
arr = np.array(range(123))
res = np.delete(arr, sig_idx)
p_surgcons_adj_rh[res] = 0
p_surgcons_adj_rh[sig_idx] = 1
p_surgcont_adj_lh = p_val_surgcont_raw_lh.copy()
sig_p = lsu(p_val_surgcont_raw_lh, q=0.05)
sig_idx = np.where(sig_p==True)
surgcont_sigs_lh = atlas['name'][sig_idx[0]]
sig_cereb = atlas['name'][sig_idx[0][9]]
arr = np.array(range(123))
res = np.delete(arr, sig_idx)
p_surgcont_adj_lh[res] = 0
p_surgcont_adj_lh[sig_idx] = 1
p_surgcont_adj_rh = p_val_surgcont_raw_rh.copy()
sig_p = lsu(p_val_surgcont_raw_rh, q=0.05)
sig_idx = np.where(sig_p==True)
arr = np.array(range(123))
res = np.delete(arr, sig_idx)
p_surgcont_adj_rh[res] = 0
p_surgcont_adj_rh[sig_idx] = 1
p_surgcont_adj_lh = p_surgcont_adj_lh[0:100]
p_surgcont_adj_rh = p_surgcont_adj_rh[0:100]
p_surgcons_adj_lh = p_surgcons_adj_lh[0:100]
p_surgcons_adj_rh = p_surgcons_adj_rh[0:100]
# In[1]:
vis_index = np.hstack([np.arange(0,9), np.arange(50,58)])
sommot_index = np.hstack([np.arange(9,15), np.arange(58,66)])
dorsatt_index = np.hstack([np.arange(15,23), np.arange(66,73)])
salvent_index = np.hstack([np.arange(23,30), np.arange(73,78)])
limbic_index = np.hstack([np.arange(30,33), np.arange(78,80)])
cont_index = np.hstack([np.arange(33,37), np.arange(80,89)])
default_index = np.hstack([np.arange(37,50), np.arange(89,100)])
subcort_index = np.hstack([np.arange(100,112)])
cerebellum_index = np.hstack([np.arange(112,123)])
network_indices = {'vis' : vis_index,
'sommot' : sommot_index,
'dorsatt' : dorsatt_index,
'salvent' : salvent_index,
'limbic' : limbic_index,
'cont' : cont_index,
'default' : default_index,
'subcort' : subcort_index,
'cereb' : cerebellum_index}
netsort = np.zeros(len(surg_arr))
for i, key_i in enumerate(network_indices):
netsort[network_indices[key_i]] = i
network_color={}
for i in vis_index:
network_color[i] = 'purple'
for i in sommot_index:
network_color[i] = 'blue'
for i in dorsatt_index:
network_color[i] = 'green'
for i in salvent_index:
network_color[i] = 'violet'
for i in limbic_index:
network_color[i] = 'gray'
for i in cont_index:
network_color[i] = 'orange'
for i in default_index:
network_color[i] = 'red'
for i in subcort_index:
network_color[i] = 'brown'
for i in cerebellum_index:
network_color[i] = 'olive'
network_color_full = []
for i in sorted(network_color):
network_color_full.append(network_color[i])
highlight_surgcons_lh = {}
for i, key_i in enumerate(surgcons_sigs_lh):
highlight_surgcons_lh[i] = atlas[atlas['name'] == key_i]
highlight = np.zeros(len(highlight_surgcons_lh))
for i in highlight_surgcons_lh:
highlight[i] = highlight_surgcons_lh[i].index[0]
nodeinfo = np.zeros(len(atlas))
for i, key_i in enumerate(highlight):
nodeinfo[int(highlight[i-1])] = 1
node_df = pd.DataFrame({'sign': nodeinfo, 'color': network_color_full})
plt.figure()
netplotbrain.plot(template='MNI152NLin2009cAsym',
nodes = map_dir + 'surfacemap.nii.gz',
nodes_df = node_df,
node_type='parcels',
node_color='color',
node_alpha = 0.0,
highlight_nodes = 'sign',
highlight_level=0.95,
view='LSP',
title = None,
figdpi = 300)
plt.savefig(fig_dir + 'netplot_surgcons_lhseed_3.png', dpi = 300)
highlight_surgcons_rh = {}
for i, key_i in enumerate(surgcons_sigs_rh):
highlight_surgcons_rh[i] = atlas[atlas['name'] == key_i]
highlight = np.zeros(len(highlight_surgcons_rh))
for i in highlight_surgcons_rh:
highlight[i] = highlight_surgcons_rh[i].index[0]
nodeinfo = np.zeros(len(atlas))
for i, key_i in enumerate(highlight):
nodeinfo[int(highlight[i-1])] = 1
node_df = pd.DataFrame({'sign': nodeinfo, 'color': network_color_full})
plt.figure()
netplotbrain.plot(template='MNI152NLin2009cAsym',
nodes = map_dir + 'surfacemap.nii.gz',
nodes_df = node_df,
node_type='parcels',
node_color='color',
node_alpha = 0.0,
highlight_nodes = 'sign',
highlight_level=0.95,
view='LSP',
title = None,
figdpi = 300)
plt.savefig(fig_dir + 'netplot_surgcons_rhseed_3.png', dpi = 300)
highlight_surgcont_lh = {}
for i, key_i in enumerate(surgcont_sigs_lh):
highlight_surgcont_lh[i] = atlas[atlas['name'] == key_i]
highlight = np.zeros(len(highlight_surgcont_lh))
for i in highlight_surgcont_lh:
highlight[i] = highlight_surgcont_lh[i].index[0]
nodeinfo = np.zeros(len(atlas))
for i, key_i in enumerate(highlight):
nodeinfo[int(highlight[i-1])] = 1
node_df = pd.DataFrame({'sign': nodeinfo, 'color': network_color_full})
plt.figure()
netplotbrain.plot(template='MNI152NLin2009cAsym',
nodes = map_dir + 'surfacemap.nii.gz',
nodes_df = node_df,
node_type='parcels',
node_color='color',
node_alpha = 0,
highlight_nodes = 'sign',
highlight_level=0.95,
view='LSP',
title = None,
figdpi = 300)
plt.savefig(fig_dir + 'netplot_surgcont_lhseed_3.png', dpi = 300)
surgcont_sigs_rh = []
highlight_surgcont_rh = {}
for i, key_i in enumerate(surgcont_sigs_rh):
highlight_surgcont_rh[i] = atlas[atlas['name'] == key_i]
highlight = np.zeros(len(highlight_surgcont_rh))
for i in highlight_surgcont_rh:
highlight[i] = highlight_surgcont_rh[i].index[0]
nodeinfo = np.zeros(len(atlas))
for i, key_i in enumerate(highlight):
nodeinfo[int(highlight[i-1])] = 1
node_df = pd.DataFrame({'sign': nodeinfo, 'color': network_color_full})
plt.figure()
netplotbrain.plot(template='MNI152NLin2009cAsym',
nodes = map_dir + 'surfacemap.nii.gz',
nodes_df = node_df,
node_type='parcels',
node_color='color',
node_alpha = 0.0,
highlight_nodes = 'sign',
highlight_level=0.95,
view='LSP',
title = None,
figdpi = 300)
plt.savefig(fig_dir + 'netplot_surgcont_rhseed_3.png', dpi = 300)
plt.figure()
netplotbrain.plot(template='MNI152NLin2009cAsym',
nodes = map_dir + 'surfacemap.nii.gz',
nodes_df = node_df,
node_type='parcels',
node_color='color',
view='LSP',
title = None,
figdpi = 300)
plt.savefig(fig_dir + 'netplot_allnets_2.png', dpi = 300)