|
| 1 | +""" |
| 2 | +Calculate the rank of a matrix. |
| 3 | +
|
| 4 | +See: https://en.wikipedia.org/wiki/Rank_(linear_algebra) |
| 5 | +""" |
| 6 | + |
| 7 | + |
| 8 | +def rank_of_matrix(matrix: list[list[int | float]]) -> int: |
| 9 | + """ |
| 10 | + Finds the rank of a matrix. |
| 11 | + Args: |
| 12 | + matrix: The matrix as a list of lists. |
| 13 | + Returns: |
| 14 | + The rank of the matrix. |
| 15 | + Example: |
| 16 | + >>> matrix1 = [[1, 2, 3], |
| 17 | + ... [4, 5, 6], |
| 18 | + ... [7, 8, 9]] |
| 19 | + >>> rank_of_matrix(matrix1) |
| 20 | + 2 |
| 21 | + >>> matrix2 = [[1, 0, 0], |
| 22 | + ... [0, 1, 0], |
| 23 | + ... [0, 0, 0]] |
| 24 | + >>> rank_of_matrix(matrix2) |
| 25 | + 2 |
| 26 | + >>> matrix3 = [[1, 2, 3, 4], |
| 27 | + ... [5, 6, 7, 8], |
| 28 | + ... [9, 10, 11, 12]] |
| 29 | + >>> rank_of_matrix(matrix3) |
| 30 | + 2 |
| 31 | + >>> rank_of_matrix([[2,3,-1,-1], |
| 32 | + ... [1,-1,-2,4], |
| 33 | + ... [3,1,3,-2], |
| 34 | + ... [6,3,0,-7]]) |
| 35 | + 4 |
| 36 | + >>> rank_of_matrix([[2,1,-3,-6], |
| 37 | + ... [3,-3,1,2], |
| 38 | + ... [1,1,1,2]]) |
| 39 | + 3 |
| 40 | + >>> rank_of_matrix([[2,-1,0], |
| 41 | + ... [1,3,4], |
| 42 | + ... [4,1,-3]]) |
| 43 | + 3 |
| 44 | + >>> rank_of_matrix([[3,2,1], |
| 45 | + ... [-6,-4,-2]]) |
| 46 | + 1 |
| 47 | + >>> rank_of_matrix([[],[]]) |
| 48 | + 0 |
| 49 | + >>> rank_of_matrix([[1]]) |
| 50 | + 1 |
| 51 | + >>> rank_of_matrix([[]]) |
| 52 | + 0 |
| 53 | + """ |
| 54 | + |
| 55 | + rows = len(matrix) |
| 56 | + columns = len(matrix[0]) |
| 57 | + rank = min(rows, columns) |
| 58 | + |
| 59 | + for row in range(rank): |
| 60 | + # Check if diagonal element is not zero |
| 61 | + if matrix[row][row] != 0: |
| 62 | + # Eliminate all the elements below the diagonal |
| 63 | + for col in range(row + 1, rows): |
| 64 | + multiplier = matrix[col][row] / matrix[row][row] |
| 65 | + for i in range(row, columns): |
| 66 | + matrix[col][i] -= multiplier * matrix[row][i] |
| 67 | + else: |
| 68 | + # Find a non-zero diagonal element to swap rows |
| 69 | + reduce = True |
| 70 | + for i in range(row + 1, rows): |
| 71 | + if matrix[i][row] != 0: |
| 72 | + matrix[row], matrix[i] = matrix[i], matrix[row] |
| 73 | + reduce = False |
| 74 | + break |
| 75 | + if reduce: |
| 76 | + rank -= 1 |
| 77 | + for i in range(rows): |
| 78 | + matrix[i][row] = matrix[i][rank] |
| 79 | + |
| 80 | + # Reduce the row pointer by one to stay on the same row |
| 81 | + row -= 1 |
| 82 | + |
| 83 | + return rank |
| 84 | + |
| 85 | + |
| 86 | +if __name__ == "__main__": |
| 87 | + import doctest |
| 88 | + |
| 89 | + doctest.testmod() |
0 commit comments