forked from EisenIn/DiscreteOpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlecture.tex
378 lines (264 loc) · 9.96 KB
/
lecture.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
\documentclass[11pt,envcountchap,pdf]{svmono}
\usepackage[pdftex]{graphicx}
%\usepackage{algorithm2e}
\usepackage{tikz}
\usetikzlibrary{arrows,%
petri,%
topaths,%
positioning}%
\usepackage{tkz-berge}
\usepackage{listings}
\lstset{
language = Python
}
\lstloadlanguages{Python}
% Define box and box title style
\tikzstyle{mybox} = [draw=black, fill=lightgray!20,
rectangle, inner sep=10pt, inner ysep=5pt]
\tikzstyle{fancytitle} =[fill=lightgray!40]
\newcommand{\fancybox}[2][Title of the box]{%
\begin{center}
\begin{tikzpicture}
\node [mybox] (box){%
\begin{minipage}{0.8\textwidth}
#1\\[1ex]
#2
\end{minipage}
};
%\node[fancytitle, right=10pt] at (box.north west) {#1};
%\node[fancytitle, rounded corners] at (box.east) {$\clubsuit$};
\end{tikzpicture}%
\end{center}
}
\newtheorem{assumption}{Assumption}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[american]{babel}
% \usepackage{pstricks}
% \usepackage{pst-node}
% \usepackage{pst-coil}
% \newgray{vlg}{.85}
% \newgray{vvlg}{.95}
\usepackage{colortbl}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{mathrsfs}
\usepackage{psfrag}
\usepackage{hyperref}
\usepackage{enumerate}
\usepackage{utf8math}
\usepackage{xspace}
\newcommand{\plw}{PLW\xspace}
\newcommand{\psv}{PSV\xspace}
\newcommand{\ip}{IP\xspace}
%\usepackage{showlabels}
\usepackage{tabularx}
%Math Operators
\DeclareMathOperator{\size}{size}
\DeclareMathOperator{\conv}{conv}
\newcommand{\SV}{\mathrm{SV}}
\newcommand{\eps}{{\varepsilon}}
\newcommand{\beps}{\mathbf{\epsilon}}
\newcommand{\bigO}{O}
\newcommand{\cut}{\mathrm{cut}}
\newcommand{\LLL}{\mathrm{LLL}}
\newcommand{\setR}{\mathbb{R}}
\newcommand{\setZ}{\mathbb{Z}}
\newcommand{\setQ}{\mathbb{Q}}
\newcommand{\setC}{\mathbb{C}}
\newcommand{\setN}{\mathbb{N}}
\newcommand{\wt}[1]{\widetilde{#1}}
\newcommand{\opt}{{\sc 0/1-opt}\xspace}
\newcommand{\aug}{{\sc 0/1-aug}\xspace}
\newcommand{\psep}{{\sc 0/1-psep}\xspace}
\newcommand{\sep}{{\sc 0/1-sep}\xspace}
\newcommand{\fopt}{{\sc 0/1-testopt\xspace} }
\newcommand{\hpp}{\mathrm{HPP}}
\newcommand{\nodes}{\mathcal{V}}
\newcommand{\vol}{\mathrm{vol}}
\newcommand{\diag}{\mathrm{diag}}
\newcommand{\arcs}{\mathcal{A}}
\newcommand{\edges}{\mathcal{E}}
\newcommand{\paths}{\mathscr{P}}
\newcommand{\cycles}{\mathcal{C}}
\newcommand{\K}{{\mathcal K}}
\newcommand{\A}{{A}}
\newcommand{\B}{{B}}
\newcommand{\T}{\mathscr{T}}
\newcommand{\eE}{\mathscr{E}}
\newcommand{\eS}{\mathscr{S}}
\newcommand{\eP}{\mathscr{P}}
\newcommand{\eM}{\mathscr{M}}
\newcommand{\transp}{^{\mathrm{T}}}
\newcommand{\smallmat}[1]{\left( \begin{smallmatrix} #1 \end{smallmatrix}\right)}
\newcommand{\mat}[1]{ \begin{pmatrix} #1 \end{pmatrix}}
\newcommand{\smat}[1]{ \big(\begin{smallmatrix} #1 \end{smallmatrix}\big)}
\newcommand{\pc}{\mathscr{P}}
\newcommand{\ob}{\mathscr{O}}
\newcommand{\odds}{\mathscr{W}}
\newcommand{\up}{\mathscr{U}}
\newcommand{\ef}{\mathscr{F}}
\newcommand{\eh}{\mathscr{H}}
\newcommand{\ev}{\mathscr{V}}
\newcommand{\ec}{\mathscr{C}}
\newcommand{\eu}{\mathscr{U}}
\newcommand{\lex}{\mathrm{lex}}
\renewcommand{\leq}{\leqslant}
\renewcommand{\geq}{\geqslant}
\newcommand{\R}{\setR}
\newcommand{\Z}{\setZ}
\newcommand{\N}{\setN}
\newcommand{\linhull}{\mathrm{lin.hull}}
\newcommand{\affhull}{\mathrm{affine.hull}}
\newcommand{\charcone}{\mathrm{char.cone}}
\newcommand{\cone}{\mathrm{cone}}
\newcommand{\rank}{\mathrm{rank}}
\newcommand{\wb}[1]{\overline{#1}}
\newenvironment{dproblem}[2]{
\begin{center}
\psframebox{
\begin{minipage}{4in}
{\sc #1 \\}
#2
\end{minipage}
}
\end{center}}
\date{\today}
\author{Friedrich Eisenbrand}
\title{Linear Optimization}
\subtitle{These are notes of my course Discrete Optimization. They are constantly updated. }
%\includeonly{algorithms,convex}
\begin{document}
\maketitle
%\Extrachap{Linear Optimization}
%\maketitle
\tableofcontents
\spdefaulttheorem{algorithm}{Algorithm}{}{}
\smartqed
\definecolor{Gray}{gray}{0.6}
\newcolumntype{A}{%
>{\centering}X}
\newcolumntype{B}{%
>{\columncolor{Gray}\centering}X}
\newcolumntype{R}{%
>{\columncolor{red}\centering}X}
\newcolumntype{G}{%
>{\columncolor{Gray}\centering}c}
\newcolumntype{E}{%
>{\columncolor{green}\centering}X}
\newcolumntype{C}{>{\bfseries\centering\arraybackslash}X}
\chapter*{Preface}
A central topic in linear algebra is the theory around linear equations
\begin{equation}
\label{p:eq:1}
A \, x = b
\end{equation}
where $A ∈ ℝ^{m×n}$ is a given matrix and $b ∈ ℝ^m$ is a given vector. Every student of mathematics learns learns to appreciate \emph{Gaussian elimination} which transforms the system~\eqref{p:eq:1} into an equivalent system
\begin{displaymath}
{A}' x = {b}'
\end{displaymath}
that is in row-echelon form. This means that ${A}' ∈ ℝ^{m×n}$ is such that
for each $i ∈ \{ 1,\dots , m-1\}$
\begin{displaymath}
\min\{ j : {a}'_{ij} \neq 0\} < \min\{ j : {a}'_{i+1j} \neq 0\},
\end{displaymath}
see Figure~\ref{fig:8}.
\begin{figure}
\centering
\includegraphics[height=5cm]{figures/RowEchelon.jpg}
\caption{A schematic image of a matrix in row-echelon form}
\label{fig:8}
\end{figure}
The system~\eqref{p:eq:1} has a solution if and only if ${b}'$ has only zero's in those components that correspond to the zero-rows of ${A}'$ and a solution is readily computed. In fact, Gaussian elimination also provides an invertible matrix $Q ∈ ℝ^{m ×m}$ such that $Q\cdot A = {A}'$ and $Q \cdot b = {b}'$. If the $i$-th component of ${b}'$ is nonzero and the $i$-th row of ${A}'$ consists of zeros only, then with $q$ being the column vector corresponding to the $i$-th row of $Q$ one has
\begin{displaymath}
q^T A = 0 \text{ and } q^Tb \neq 0.
\end{displaymath}
Thus there is a convenient \emph{certificate} of the fact that \eqref{p:eq:1} is not solvable.
\begin{theorem}
\label{thr:8}
A linear system~\eqref{p:eq:1} is not solvable if and only if there exists a vector $q ∈ ℝ^m$ such that
\begin{displaymath}
q^T A = 0 \text{ and } q^T b \neq 0.
\end{displaymath}
\end{theorem}
In this course, we will now also deal with systems of \emph{linear inequalities}
\begin{equation}
\label{p:ineq}
A \,x ≤ b,
\end{equation}
where $A ∈ ℝ^{m × n}$ and $b ∈ ℝ^m$. A \emph{solution} to such a system is a vector $x^* ∈ ℝ^m$ such that
\begin{equation}
\label{p:sol}
\text{for each } i=1,\dots,m \quad : \quad a_{i1} x^*_1 + \cdots + a_{in} x^*_n \leq b_i.
\end{equation}
If a solution exists, the system~\eqref{p:ineq} is called \emph{feasible} otherwise it is called \emph{infeasible}.
We will ask analogous questions for systems of linear inequalities as we did for linear equations. Can we efficiently find a solution of~\eqref{p:ineq}? Is there a simple certificate to convince somebody of the infeasibility of \eqref{p:ineq}?
To shed a bit of light on this second question, let us consider a vector $λ ∈ ℝ^m_{≥0}$. If $x^*$ is a solution, then $x^*$ also satisfies the inequality
\begin{equation}
\label{p:impli}
λ^T A \, x ≤ λ^T b.
\end{equation}
If there exists a $λ \in ℝ^m_{≥0}$ such that
\begin{equation}
\label{p:Farkas}
λ^T A = 0^T \text{ and } λ^T b = -1,
\end{equation}
then this $λ$ \emph{certifies} that~\eqref{p:ineq} is infeasible. In the case of infeasibility, can such a $λ≥0$ always be found? Among the many results presented in this course, we will show that the answer is ``yes''.
\begin{theorem}[Farkas' lemma]
\label{thr:7}
A system of linear inequalities~\eqref{p:ineq} is infeasible if and only if there exists a $λ ∈ ℝ^m_{≥0}$ such that
\begin{displaymath}
λ^T A = 0 \text{ and } λ^T b = -1.
\end{displaymath}
\end{theorem}
Central to this course is the \emph{linear programming} or \emph{linear optimization} problem. There, one is given a system of linear inequalities~\eqref{p:ineq} together with a linear objective function $f(x) = c^Tx$ for some fixed $c ∈ℝ^n$. The task is to solve
\begin{equation}
\label{eq:1}
\max\{ c^Tx : x ∈ ℝ^n, \, Ax \leq b\},
\end{equation}
or in other words, to find an $x^* ∈ ℝ^n$ that is a solution of \eqref{p:ineq} such that $c^T x^* ≥ c^T y^*$ for each solution $y^*$ of \eqref{p:ineq}, if such an $x^*$ exists.
The linear optimization problem is one of the most important types of mathematical optimization problems. It has numerous applications in science and engineering and, in particular, modern fields like \emph{machine learning}.
In this course, we will learn the theory of linear optimization and develop \emph{efficient algorithms} to solve linear programming problems. This means that we do not content ourselves with an algorithm that is correct, but we want this algorithm to be capable to solve large scale problems within a short time.
\emph{Efficient algorithms} is a subfield of computational mathematics on its own. Before we begin with our considerations on linear programming, we will have to learn the basics of it.
\section*{Exercises}
\begin{enumerate}[1)]
\item Provide a certificate as in Theorem~\ref{thr:8} of the unsolvability of the linear equation
\begin{displaymath}
\begin{pmatrix}
2 & 1 & 0 \\
5 & 4 & 1 \\
7 & 5 & 1
\end{pmatrix} \,
\begin{pmatrix}
x_1 \\ x_2 \\ x_3
\end{pmatrix} =
\begin{pmatrix}
1\\2\\4
\end{pmatrix}
\end{displaymath}
\item Show the ``if'' direction of the Farkas' lemma (Theorem~\ref{thr:7}).
\end{enumerate}
\include{algorithms}
\include{convex}
\include{introduction}
\include{simplex-15}
\include{analysis}
\include{polyhedra}
%\include{old-lecture}
%%\include{simplex}
%%\include{cycling}
\include{duality}
\include{integer-programming}
%%\include{dualsimplex}
\include{flows}
\include{ellipsoid}
\include{primal-dual}
\bibliographystyle{abbrv}
\bibliography{mybib,papers,books,my_publications}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: