forked from EisenIn/DiscreteOpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolyhedra.tex
1055 lines (803 loc) · 39.2 KB
/
polyhedra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Polyhedra and Integer Programming}
\label{po:cha:polyhedra}
In this section we give definitions and fundamental facts about
polyhedra. An excellent reference for this topic is the book by
Schrijver~\cite{Schrijver86}. A \emph{polyhedron} $P$ is a set of
vectors of the form $P=\{ x \in \setR^n \mid Ax \leq b\}$, for some matrix $A \in \setR^{m
\times n}$ and some vector $b \in \setR^m$. We write $P(A,b)$. The polyhedron
is \emph{rational} if both $A$ and $b$ can be chosen to be rational.
Recall that a finite set $V\subseteq\setR^n$ is \emph{affinely independent} if for each $v\in
V$ one has $v\notin\affhull(V \textbackslash{} \{v\})$. This is equivalent to $(V - v) \setminus \{0\}$ being
linearly independent for each $v \in V$. The \emph{dimension} of $V$ is
the size of the largest subset of $V$ which is affinely independent
minus one:
\[ \dim(V) = \max\{ |U| - 1 \mid U \subseteq V \text{ is affinely independent} \} \]
\begin{example}
\begin{itemize}
\item $\dim(\setR^n) = n$
\item $\dim(\{x\}) = 0$ for every $x\in\setR^n$
\item $\dim(\emptyset) = -1$
\end{itemize}
\end{example}
Notice that $V\subseteq\setR^n$ is affinely independent if and only if $(V - v)
\setminus \{0\}$ is linearly independent for each $v \in V$.
\begin{definition}
\label{po:def:5}
An inequality $a^Tx\leq\beta$ is called an \emph{implicit equality} of
$Ax\leq b$ if each $x^* \in P(A,b)$ satisfies $a^Tx^* = \beta$. We denote the
subsystem consisting of implicit equalities of $Ax\leq b$ by $A^=x\leq b^=$
and the subsystem consisting of the other inequalities by
$A^\leq x\leq b^\leq$. A constraint is \emph{redundant} if its removal from
$Ax\leq b$ does not change the set of feasible solution of $Ax\leq b$.
\end{definition}
In the following, a vector $x$ satisfies $Ax < b$ if and only if
$a_i^T x < b_i$ for all $1\leq i\leq m$, where $a_1$,\ldots,$a_m$ are the rows of $A$.
\begin{lemma}
\label{po:lem:3}
Let $P(A,b)$ be a non-empty polyhedron.
Then there exists an $x \in P(A,b)$ with $A^\leq x<b^\leq$.
\end{lemma}
\begin{proof}
Suppose that the inequalities in $A^\leq x\leq b^\leq$ are $a_1^Tx\leq\beta_1
,\ldots,a_k^Tx\leq\beta_k$. For each $1\leq i\leq k$ there exists an $x_i \in P$ with
$a_i^Tx_i<\beta_i$. Thus the point $x = 1/k (x_1+\cdots+x_k)$ is a point of
$P(A,b)$ satisfying $A^\leq x<b^\leq$.
\end{proof}
\begin{lemma}
\label{po:lem:2}
Let $Ax\leq b$ be a system of inequalities. One has
\begin{displaymath}
\affhull(P(A,b)) = \{ x \in \setR^n \mid A^=x = b^=\} = \{ x \in \setR^n \mid A^=x\leq b^=\}.
\end{displaymath}
\end{lemma}
\begin{proof}
Let $x_1,\ldots,x_t \in P(A,b)$ and suppose that $a^Tx\leq\beta$ is an
implicit equality. Then since $a^Tx_i = \beta$ one has
$a^T(\sum_{j=1}^t\lambda_ix_i) = \beta$. Therefore the inclusions $\subseteq$
follow.
Suppose now that $x_0$ satisfies $A^=x\leq b^=$. Let $x_1 \in P(A,b)$
with $A^\leq x_1<b^\leq$. If $x_0=x_1$ then $x_0 \in P(A,b) \subseteq
\affhull(P(A,b))$. Otherwise the line segment between $x_0$ and
$x_1$ contains more than one point in $P$ and thus $x_0 \in
\affhull(P)$.
\end{proof}
\section{Decomposition theorem for polyhedra}
A nonempty set $C\subseteq\setR^n$ is a \emph{cone} if $\lambda\, x + \mu\,y \in C$
for each $x,y\in C$ and $\lambda,\mu\in \setR_{\geq0}$. A cone $C$ is \emph{polyhedral}
if $C = \{ x \in \setR^n \mid Ax\leq0\}$. A cone \emph{generated by} vectors
$x_1,\ldots,x_m \in \setR^n$ is a set of the form $C = \{ \sum_{i=1}^m \lambda_i x_i
\mid \lambda_i\in \setR_{\geq0}, \, i=1,\ldots,m\}$. A point $x = \sum_{i=1}^m \lambda_i x_i$
with $\lambda_i\in \setR_{\geq0}, \, i=1,\ldots,m$ is called a \emph{conic
combination} of the $x_1,\ldots,x_m$. The set of conic combinations of
$X$ is denoted by $\cone(X)$.
\begin{theorem}[Farkas-Minkowsi-Weyl theorem]
\label{po:thr:3}
A convex cone is polyhedral if and only if it is finitely
generated.
\end{theorem}
\begin{proof}
Suppose that $a_1,\ldots,a_m$ span $\setR^n$ and consider the cone $C = \{
\sum_{i=1}^m \lambda_i a_i \mid \lambda_i\geq0, \, i=1,\ldots,m\}$.
Let $b \notin C$.
Then the system $A\lambda = b$, $\lambda \geq 0$ has no solution.
By Theorem~\ref{conv:thr:12} (Farkas' lemma), this implies that there exists a $y\in\setR^n$
such that $A^Ty \leq 0$ and $b^Ty > 0$.
Suppose that the columns of $A$ which correspond to
inequalities in $A^Ty\leq0$ that are satisfied by $y$ with equality
have rank $<n-1$.
Denote these columns by $a_{i_1},\ldots,a_{i_k}$.
Then there exists a $v\neq0$ which is orthogonal to
each of these columns and to $b$, i.e., $a_{i_j}^Tv = 0$ for each
$j=1,\ldots,k$ and $b^Tv =0 $.
There also exists a column $a^*$ of $A$ which is not in the set
$\{a_{i_1},\ldots,a_{i_k}\}$ such that $(a^*)^Tv>0$ since the columns of
$A$ span $\setR^n$. Therefore there exists an $\epsilon>0$ such that
\begin{enumerate}[i)]
\item $A^T(y + \epsilon \cdot v)\leq0$
\item The subspace generated by the columns of $A$ which correspond
to inequalities of $A^Tx\leq0$ which are satisfied by $y + \epsilon \cdot v$
with equality strictly contains $\langle a_{i_1},\ldots,a_{i_k}\rangle$.
\end{enumerate}
Notice that we have $b^Ty = b^T(y + \epsilon \cdot v)>0$.
Continuing this way, we obtain a solution of the form $y + u$ of
$A^Tx\leq0$ such that one has $n-1$ linearly independent columns of $A$
whose corresponding inequality in $A^Tx\leq0$ are satisfied with
equality. Thus we see that each $b$ which does
not belong to $C$ can be separated from $C$ with an inequality of
the form $c^Tx\leq0$ which
is uniquely defined by $n-1$ linearly independent vectors from the set
$a_1,\ldots,a_m$. This shows that $C$ is polyhedral.
Suppose now that $a_1,\ldots,a_m$ do not span $\setR^n$. Then there exist
linearly independent vectors $d_1,\ldots,d_k$ such that each $d_i$ is
orthogonal to each of the $a_1,\ldots,a_m$ and $a_1,\ldots,a_m,d_1,\ldots,d_k$
spans $\setR^n$. The cone generated by
$a_1,\ldots,a_m,d_1,\ldots,d_k$ is polyhedral and thus of the form $Ax\leq0$
with some matrix $A\in \setR^{m\times n}$. Suppose that $\langle a_1,\ldots,a_m\rangle = \{x
\in \setR^n \mid Ux = 0\}$. Now $C = \{ x \in \setR^n \mid Ax\leq0, \, Ux = 0\}$
and $C$ is polyhedral.
Now suppose that $C = \{ x \in \setR^n \mid a_1^Tx\leq0,\ldots,a_m^Tx\leq0\}$.
The cone
\[ C' := \cone(a_1,\ldots,a_m) = \{ \sum_{i=1}^m \lambda_i a_i \mid
\lambda_i\geq0,\,i=1,\ldots,m\} \]
is polyhedral and thus of the form $C' = \{ x
\in \setR^n \mid b_1^Tx\leq0, \ldots,b_k^Tx\leq0\}$. Clearly,
$\cone(b_1,\ldots,b_k)\subseteq C$ since $b_i^Ta_j\leq0$. Suppose now that $y \in
C \textbackslash{} \cone(b_1,\ldots,b_k)$. Then, since $\cone(b_1,\ldots,b_k)$ is
polyhedral, there exists a $w\in \setR^n$ with $w^Ty>0$ and $w^Tb_i\leq0$
for each $i=1,\ldots,k$. From the latter we conclude that $w \in
C'$. From $y \in C$ and $w \in C'$ we conclude $w^Ty\leq0$, which is a contradiction.
\end{proof}
A set of vectors $Q = \conv(X)$, where $X\subseteq\setR^n$ is finite is called a
\emph{polytope}.
\begin{theorem}[Decomposition theorem for polyhedra]
\label{po:thr:4}
A set $P\subseteq\setR^n$ is a polyhedron if and only if $P = Q + C$ for some
polytope $Q$ and a polyhedral cone $C$.
\end{theorem}
\begin{proof}
Suppose $P = \{ x \in \setR^n \mid Ax\leq b\}$ is a polyhedron. Consider the
polyhedral cone
\begin{equation}
\label{po:eq:6}
\left\{\mat{x\\\lambda} \mid x \in \setR^n, \, \lambda \in \setR_{\geq0}; Ax -
\lambda b\leq0\right\}
\end{equation}
is generated by finitely many vectors $\mat{x_i\\\lambda_i}$,
$i=1,\ldots,m$. By scaling with a positive number we may assume that
each $\lambda_i\in \{0,1\}$. Let $Q$ be the convex hull of the $x_i$ with
$\lambda_i=1$ and let $C$ be the cone generated by the $x_i$ with
$\lambda_i=0$. A point $x \in \setR^n$ is in $P$ if and only if $\mat{x\\1}$
belongs to~\eqref{po:eq:6} and thus if and only if
\begin{displaymath}
\mat{x\\1} \in
\cone\left\{\mat{x_1\\\lambda_1},\ldots,\mat{x_m\\\lambda_m}\right\}.
\end{displaymath}
Therefore $P = Q + C$.
Suppose now that $P = Q+C$ for some polytope $Q$ and a polyhedral
cone $C$ with $Q = \conv(x_1,\ldots,x_m)$ and $C = \cone(y_1,\ldots,y_t)$. A
vector $x_0$ is in $P$ if and only if
\begin{equation}
\label{po:eq:7}
\mat{x_0\\1} \in \cone\left\{\mat{x_1\\1},\ldots, \mat{x_m\\1},\mat{y_1\\0},\ldots,\mat{y_t\\0} \right\}
\end{equation}
By Theorem~\ref{po:thr:3} \eqref{po:eq:7} is equal to
\begin{equation}
\label{po:eq:12}
\left\{ \mat{x\\\lambda} \mid Ax - \lambda b \leq0\right\}
\end{equation}
for some matrix $A$ and vector $b$. Thus $x_0\in P$ if and only if
$Ax_0\leq b$ and thus $P$ is a polyhedron.
\end{proof}
\begin{figure}[htbp]
\begin{center}
%\resizebox{4cm}{4cm}{%
\includegraphics{figures/PicPolyhedra1.pdf}
%}
\end{center}
\caption{A polyhedron and its decomposition into $Q$ and $C$\label{po:fig:decomp}}
\end{figure}
Let $P = \{ x \in \setR^n \mid Ax\leq b\}$. The \emph{characteristic cone} is
$\charcone(P) =\{ y \mid y+x \in P \text{ for all } x \in P\} = \{y \mid Ay
\leq0\}$. One has
\begin{enumerate}[i)]
\item $y \in \charcone(P)$ if and only if there exists an $x \in P$ such
that $x + \lambda\,y \in P$ for all $\lambda\geq0$
\item $P + \charcone(P)=P$
\item $P$ is bounded if and only if $\charcone(P)=\{0\}$.
\item If the decomposition of $P$ is $P = Q +C$, then $C = \charcone(P)$.
\end{enumerate}
The \emph{lineality space} of $P$ is defined as $\charcone(P) \cap -
\charcone(P)$. A polyhedron is \emph{pointed}, if its lineality space is
$\{0\}$.
\section{Faces}
\label{po:sec:faces}
An inequality $c^Tx\leq\delta$ is called \emph{valid} for $P$ if each $x
\in P$ satisfies $c^Tx\leq\delta$. If in addition $(c^Tx = \delta) \cap P \neq\emptyset$,
then $c^Tx\leq\delta$ is a \emph{supporting inequality} and $c^Tx = \delta$ is a
supporting hyperplane.
A set $F\subseteq\setR^n$ is called a \emph{face} of $P$ if there exists a
valid inequality $c^Tx\leq\delta$ for $P$ with $F = P \cap (c^Tx = \delta)$.
\begin{lemma}
\label{po:lem:4}
A set $\emptyset \neq F \subseteq \setR^n$ is a face of $P$
if and only if $F = \{ x \in P \mid A'x = b'\}$ for a subset $A'x\leq b'$ of $Ax\leq b$.
\end{lemma}
\begin{proof}
Suppose that $F = \{ x \in P \mid A'x = b'\}$. Consider the vector $c =
1^TA'$ and $\delta = 1^Tb'$. The inequality $c^Tx\leq \delta$ is valid for
$P$. It is satisfied with equality by each $x \in F$. If $x' \in P\textbackslash{}
F$, then there exists an inequality $a^Tx\leq\beta$ of $A'x\leq b'$ such
that $ a^Tx' < \beta$ and consequently $c^Tx'<\delta$.
On the other hand, if $c^Tx\leq\delta$ defines the face $F$,
then by the linear programming duality
\[ \max\{ c^Tx \mid Ax\leq b \} = \min\{ b^T\lambda \mid A^T\lambda = c, \lambda \geq 0 \} \]
there exists a $\lambda \in \setR^m_{\geq 0}$ such that $c=\lambda^TA$ and $\delta = \lambda^Tb$.
Let $A'x\leq b'$ be the
subsystem of $Ax\leq b$ which corresponds to strictly positive entries
in $Ax\leq b$. One has $F = \{ x \in P \mid A'x = b'\}$.
\end{proof}
A \emph{facet} of $P$ is an inclusion-wise maximal face $F$ of $P$
with $F\neq P$. An inequality $a^Tx\leq\beta$ of $Ax\leq b$ is called
\emph{redundant} if $P(A,b) = P(A',b')$, where $A'x\leq b'$ is the system
stemming from $Ax\leq b$ by deleting $a^Tx\leq\beta$. A system $Ax\leq b$ is
irredundant if $Ax\leq b$ does not contain a redundant inequality.
\begin{lemma}
\label{po:lem:1}
Let $Ax\leq b$ be an irredundant system.
Then a set $F\subseteq P$ is a facet if and only if it is
of the form $F = \{ x \in P \mid a^Tx = \beta\}$ for an
inequality $a^Tx\leq\beta$ of $A^\leq x\leq b^\leq$.
\end{lemma}
\begin{proof}
Let $F$ be a facet of $P$. Then $F = \{x \in P \mid c^Tx\leq\delta\}$ for a valid
inequality $c^Tx\leq\delta$ of $P$. There exists a $\lambda \in \setR_{\geq0}^m$ with
$c=\lambda^TA$ and $\delta=\lambda^Tb$. There exists an inequality $a^Tx\leq\beta$ of
$A^\leq x\leq b^\leq$ whose corresponding entry in $\lambda$ is strictly
positive. Clearly $F\subseteq\{x \in P \mid a^Tx=\beta\}\subset P$. Since $F$ is an
inclusion-wise maximal face one has $F = \{x \in P \mid a^Tx=\beta\}$.
Let $F$ be of the form $F = \{ x \in P \mid a^Tx = \beta\}$ for an inequality
$a^Tx\leq\beta$ of $A^\leq x\leq b^\leq$. Clearly $F \neq \emptyset$ since the system $Ax\leq b$ is
irredundant. If $F$ is not a facet, then $F\subseteq F'=\{ x \in P \mid a'^Tx = \beta'\}$
with another inequality $a'^Tx\leq\beta'$ of $A^\leq x\leq b^\leq$. Let $x^*\in \setR^n$ be a point with
$a^Tx^*>\beta$ and which satisfies all other inequalities of $Ax\leq b$. Such an $x^*$
exists, since $Ax\leq b$ is irredundant. Let $\wt{x}\in P$ with
$A^\leq\wt{x}<b^\leq$. There exists a point $\wb{x}$ on the
line-segment $\wb{\wt{x}x^*}$ with $a^T\wb{x}=\beta$. This point is then
also in $F'$ and thus $a'^Tx = \beta'$ follows. This shows that
$a'^Tx^*>\beta'$
and thus $a^Tx\leq\beta$ can be
removed from the system. This is a contradiction to
$Ax\leq b$ being irredundant.
\end{proof}
\begin{lemma}
\label{po:lem:5}
A face $F$ of $P(A,b)$ is inclusion-wise minimal if and only if it
is of the form $F = \{ x \in \setR^n \mid A'x=b'\}$ for some subsystem
$A'x\leq b'$ of $Ax\leq b$.
\end{lemma}
\begin{proof}
Let $F$ be a minimal face of $P$ and let $A'x\leq b'$ a the subsystem
of inequalities of $Ax\leq b$ with $F = \{ x \in P \mid A'x=b'\}$. Suppose that
$F \subset \{x\in\setR^n \mid A'x=b'\}$ and let $x_1 \in \setR^n \textbackslash{} P$ satisfy
$A'x_1=b'$ and $x_2 \in F$. There exists ``a first'' inequality $a^Tx\leq\beta$ of
$Ax\leq b$ which is ``hit'' by the line-segment $\wb{x_2x_1}$. Let $x^* =
\wb{x_2x_1}\cap(a^Tx=\beta)$. Then $x^*\in F$ and thus $F \cap (a^Tx=\beta) \neq
\emptyset$. But $F \supset F \cap (a^Tx=\beta)$ since $a^Tx \leq\beta$ is not an inequality of
$A'x\leq b'$. This is a contradiction to the minimality of $F$.
Suppose that $F$ is a face with $F = \{x \in \setR^n \mid A'x= b'\}
= \{x \in P \mid A'x=b'\}$ for a subsystem $A'x\leq b'$ of $Ax\leq
b$. Suppose that there exists a face $\wt{F}$ of $P$ with $\emptyset
\subset \wt{F}\subset F$. By Lemma~\ref{po:lem:4} $\wt{F} = \{ x \in
P \mid A'x=b', A^*x=b^*\}$, where $A^*x\leq b^*$ is a sub-system of
$Ax\leq b$ which contains an inequality $a^Tx\leq\beta$ such that
there exists an $x_1,x_2 \in F$ with $a^Tx_1<\beta$ and
$a^Tx_2\leq\beta$. The line $\ell(x_1,x_2) = \{ x_1 +
\lambda(x_2-x_1) \mid \lambda \in \setR\}$ is contained in $F$ but
is not contained in $a^Tx\leq\beta$. This shows that $F$ is not
contained in $P$ which is a contradiction.
\end{proof}
Exercise~\ref{item:19} asks for a proof of the following corollary.
\begin{corollary}
\label{co:8}
Let $F_1$ and $F_2$ be two inclusion-wise minimal faces of
$P=\{x\in\setR^n\colon Ax \leq b\}$, then $\dim(F_1) = \dim(F_2)$.
\end{corollary}
We say that a polyhedron contains a line $\ell(x_1,x_2)$ with $x_1
\neq x_2 \in P$ if $\ell(x_1,x_2) = \{ x_1 + \lambda(x_2-x_1) \mid
\lambda \in \setR \}\subseteq P$. A \emph{vertex} of $P$ is a
$0$-dimensional face of $P$. An \emph{edge} of $P$ is a
$1$-dimensional face of $P$.
\begin{example}
Consider a linear program $\min\{c^Tx \colon Ax = b,\, x\geq0\}$. A basic
feasible solution defined by the basis $B\subseteq\{1,\ldots,n\}$ is a vertex of
the polyhedron $P = \{x \in \setR^n \colon Ax = b,\, x\geq0\}$. This can be seen
as follows. The inequality $a^Tx\geq0$ is valid for $P$, where $a_B =
\mathbf{0}$ and $a_{\overline{B}} = \mathbf{1}$. The inequality is
satisfied with equality by a point $x^* \in P$ if and only if
$x^*_{\overline{B}} = \mathbf{0}$. Since the columns of $A_B$ are
linearly independent, as $B$ is a basis, the unique point which
satisfies $a^Tx\geq0$ with equality is the basic feasible solution
\end{example}
In exercise~\label{item:18} you are asked to show that the simplex
method can be geometrically interpreted as a walk on the graph $G =
(V,E)$, where $V$ is the set of basic feasible solutions and $uv\in E$
if and only if $\conv\{u,v\}$ is a $1$-dimensional face of the
polyhedron defined by the linear program.
\subsection{Integer Programming}
\label{sec:integer-programming}
An \emph{integer program} is a problem of the form
\begin{displaymath}
\begin{array}{c}
\max c^Tx \\
Ax\leq b \\
x \in \setZ^n,
\end{array}
\end{displaymath}
where $A \in \setR^{m\times n}$ and $b \in \setR^m$.
\begin{figure}[htbp]
\begin{center}
\includegraphics{figures/PicPolyhedra2.pdf}
\label{fig:inthull}
\end{center}
\caption{This picture illustrates a polyhedron $P$ an objective
function vector $c$ and optimal points $u,v$ of the integer
program and the relaxation respectively. }
\end{figure}
The difference to linear
programming is the \emph{integrality constraint} $x \in \setZ^n$. This
powerful constraint allows to model discrete choices but, at the same
time, makes an integer program much more difficult to solve than a
linear program. In fact one can show that integer programming is
NP-hard, which means that it is \emph{in theory} computationally
intractable. However, integer programming has nowadays become an
important tool to solve difficult industrial optimization problems
efficiently. In this chapter, we characterize some integer programs
which are easy to solve, since the \emph{linear programming
relaxation} $\max\{c^Tx \colon Ax\leq b\}$ yields already an optimal
integer solution. The following observation is crucial.
\begin{theorem}
\label{thr:14}
Suppose that the optimum solution $x^*$ of the linear programming
relaxation $\max\{c^Tx \colon Ax\leq b\}$ is integral, i.e., $x^* \in
\setZ^n$, then $x^*$ is also an optimal solution to the integer
programming problem $\max\{c^Tx \colon Ax\leq b, \, x \in \setZ^n\}$
\end{theorem}
Before we present an example for the power of integer programming we
recall the definition of an undirected graph.
\begin{definition}[Undirected graph, matching]
An \emph{undirected graph} is a tuple $G = (V,E)$ where $V$ is a
finite set, called the \emph{vertices} and $E\subseteq\binom{V}{2}$ is the
set of \emph{edges} of $G$. A \emph{matching} of $G$ is a subset
$M\subseteq E$ such that for all $e_1\neq e_2\in M$ one has $e_1\cap e_2 = \emptyset$.
\end{definition}
We are interested in the solution of the following problem, which is
called \emph{maximum weight matching} problem. Given a graph $G =
(V,E)$ and a weight function $w:E\to\setR$, compute a matching with
maximum weight $w(M) = \sum_{e \in M} w(e)$.
For a vertex $v \in V$, the set $\delta(v) = \{e \in E \colon v \in e\}$ denotes
the \emph{incident} edges to $v$.
The maximum weight matching problem can now be modeled as an integer
program as follows.
\begin{displaymath}
\begin{array}{c}
\max \sum_{e \in E} w(e) x(e) \\
v \in V: \, \sum_{e \in \delta(v)} x(e)\leq1 \\
e \in E:\, 0\leq x(e) \\
x \in \setZ^{|E|}.
\end{array}
\end{displaymath}
Clearly, if an integer vector $x \in \setZ^n$ satisfies the constraints
above, then this vector is the \emph{incidence vector} of a matching of
$G$. In other words, the integral solutions to the constraints above
are the vectors $\{\chi^M \colon M \text{ matching of }G\}$, where $\chi^M(e)
= 1$ if $e \in M$ and $\chi^M(e)=0$ otherwise.
\subsection{Integral Polyhedra}
In this section we derive sufficient conditions on an integer program
to be solved easily by an algorithm for linear programming. A central
notion is the one of an integral polyhedron. A rational polyhedron $P$
is called \emph{integral} if each minimal face of $P$ contains an
integer point.
\begin{theorem}
\label{po:thr:5}
Let $P = \{x \in \setR^n \mid Ax\leq b\}$ be a rational nonempty polyhedron with
vertices. $P$ is integral if and only if for all integral vectors $c
\in \setZ^n$ with $\max\{c^Tx \mid x \in P\}<\infty$ one has $\max\{c^Tx \mid x
\in P\} \in \setZ$.
\end{theorem}
\begin{proof}
Let $P$ be integral and $c \in \setZ^n$ with
$\max\{c^Tx\mid x\in P\}=\delta<\infty$. Since the face $F=\{x\in P\mid c^Tx=\delta\}$
contains an integer point it follows that $\delta\in\setZ$.
On the other hand let $x^*$ be a vertex of $P$ and assume that $x^*(i) \notin
\setZ$. There exists a subsystem $A'x\leq b'$ of $Ax\leq b$ with $A'\in\setR^{n\times n}$,
$A'$ nonsingular and $A'x^*=b'$. Let $a_1,\ldots,a_n$ be the rows of
$A'$. Since $A'$ is invertible, there exists an integer vector $c \in
\cone(a_1,\ldots,a_n)\cap\setZ^n$ such that $c\pm e_i \in
\cone(a_1,\ldots,a_n)$. The point $x^*$ maximizes both $c^Tx$ and
$(c+e_i)^Tx$. Clearly not both numbers $c^Tx^*$ and
$(c+e_i)^Tx^*$ can be integral, which is a contradiction.
\end{proof}
\begin{lemma}
\label{po:lem:6}
Let $A\in \setZ^{n\times n}$ be an integral and invertible matrix. One has
$A^{-1}b \in \setZ^n$ for each $b \in \setZ^n$ if and only if $\det(A)=\pm 1$.
\end{lemma}
\begin{proof}
Recall Cramer's rule which says $A^{-1} = 1/\det(A) \wt{A}$, where
$\wt{A}$ is the adjoint matrix of $A$. Clearly $\wt{A}$ is
integral. If $\det(A) = \pm 1$, then $A^{-1}$ is an integer matrix.
If $A^{-1}b$ is integral for each $b \in \setZ^n$, then $A^{-1}$ is an
integer matrix. We have $1=\det(A\cdot A^{-1})=\det(A)\cdot\det(A^{-1})$.
Since $A$ and $A^{-1}$ are integral it follows that $\det(A)$ and
$\det(A^{-1})$ are integers. The only divisors of one in the integers
are $\pm 1$.
\end{proof}
A matrix $A \in \setZ^{m\times n}$ with $m\leq n$ is called \emph{unimodular} if
each $m\times m$ sub-matrix has determinant $0,\pm1$.
\begin{theorem}
\label{po:thr:14}
Let $A \in \setZ^{m\times n}$ be an integral matrix of full row-rank. The
polyhedron defined by $Ax=b, x\geq0$ is integral for each $b \in \setZ^m$
if and only if $A$ is unimodular.
\end{theorem}
\begin{proof}
Suppose that $A$ is unimodular and $b$ is integral. The polyhedron
$P = \{ x \in \setR^n \mid Ax=b, \, x\geq0\}$ does not contain a line and
thus has vertices. A vertex $x^*$ is of the form $x^*_B= A_B^{-1}b$
and $x^*_{\wb{B}}=0$, where $B\subseteq\{1,\ldots,n\}$ is a basis. Since $A_B$
is unimodular one has $x^* \in \setZ^n$.
If $A$ is not unimodular, then there exists a basis $B$ with
$\det(A_B) \neq \pm1$. By Lemma~\ref{po:lem:6} there exists an integral $b
\in \setZ^n$ with $(A_B)^{-1}b \notin \setZ^m$. Let $\lambda$ be the maximal
absolute value of a component of $A_B^{-1}b$. Then $b' = \lceil\lambda\rceil A_B \mathbf{1}
+b$ is an integral vector with $ A_B^{-1}b' = \lceil\lambda\rceil \mathbf{1}+
A_B^{-1}b \geq0$ and $A_B^{-1}b' \notin \setZ^m$. The
polyhedron $P = \{ x \in \setR^n \mid Ax = b', \, x\geq0\}$ has thus a fractional
(non-integer) vertex.
\end{proof}
An integral matrix $A \in \{0 , \pm 1\}^{m\times n}$ is called \emph{totally
unimodular} if each of its square sub-matrices has determinant
$0,\pm1$.
\begin{theorem}[Hoffman-Kruskal Theorem]
\label{po:thr:16}
Let $A\in \setZ^{m\times n}$ be an integral matrix. The polyhedron $P = \{ x
\in \setR^n \mid Ax\leq b, \, x\geq0\}$ is integral for each integral $b \in
\setZ^m$ if and only if $A$ is totally unimodular.
\end{theorem}
\begin{proof}
The polyhedron $P = \{ x \in \setR^n \mid Ax\leq b, \, x\geq0\}$ is integral
if and only if the polyhedron $Q = \{ z \in \setR^{n+m} \mid (A|I)z = b,
\, z\geq0\}$ is integral. The assertion thus follows from
Theorem~\ref{po:thr:14}.
\end{proof}
If an integral polyhedron has vertices, then an optimal vertex
solution of a linear program over this polyhedron is integral.
\section{Applications of total unimodularity}
\subsubsection{Bipartite matching}
% An undirected graph $G=(V,E)$ is a tuple, where $V$ is a finite set
% and $E$ is a set of unordered pairs of $V$. The set $V$ is called
% \emph{nodes} and the set $E$ are the \emph{edges} of $G$. We write
% $uv$ in short for the edge $\{u,v\}\subseteq V$.
A graph is
\emph{bipartite}, if $V$ has a partition into sets $A$ and $B$ such
that each edge $uv$ satisfies $u\in A$ and $v \in B$.
Recall that $\delta(v)$ is the set of edges incident to the vertex $v\in V$,
that is $\delta(v) = \{ e\in E \mid v\in e \}$.
A \emph{matching} of $G$ is a subset $M\subseteq E$ such that $e_1\cap e_2 = \emptyset$
holds for each $e_1\neq e_2\in M$. Let $c:E\longrightarrow\setR$ be a weight function. The
weight of a matching is defined as $c(M) = \sum_{e \in M}c(e)$. The
\emph{weighted matching problem } is defined as follows. Given a
graph $G = (V,E)$ and edge-weights $c:E\longrightarrow\setR$, compute a matching $M$
of $G$ with $c(M)$ maximal.
%We have already seen how to compute a maximum weight matching of a
%bipartite graph in polynomial time with a polynomial minimum cost
%network flow algorithm. We now take a different perspective.
We now define
an \emph{integer program} for this problem and show that, for
bipartite graphs, an optimal vertex of the corresponding linear
program is integral.
The idea is as follows. We have decision variables $x(e)$ for each
edge $e \in E$. We want to model the characteristic vectors $\chi^M\in
\{0,1\}^E$ of matchings, where $\chi^M(e)=1$ if $e\in M$ and $\chi^M(e)=0$
otherwise. This is achieved with the following set of constraints.
\begin{equation}
\label{po:eq:3}
\begin{array}{rcll}
\sum_{e \in \delta(v)} x(e) &\leq&1, & \forall v \in V \\
x(e) &\geq&0, & \forall e \in E.
\end{array}
\end{equation}
Clearly, the set of vectors $x \in \setZ^E$ which satisfy the
system~\eqref{po:eq:3} are exactly the characteristic vectors of
matchings of $G$. The matrix $A \in \{0,1\}^{V\times E}$ which is defined as
\begin{displaymath}
\label{po:sec:bipartite-matching}
A(v,e) =
\begin{cases}
1 & \text{ if } v \in e,\\
0 & \text{ otherwise}
\end{cases}
\end{displaymath}
is called \emph{node-edge incidence matrix} of $G$.
\begin{lemma}
\label{po:lem:9}
If $G$ is bipartite, the node-edge incidence matrix of $G$ is
totally unimodular.
\end{lemma}
Lemma~\ref{po:lem:9} implies that each vertex of the polytope $P$ defined
by the inequalities~\eqref{po:eq:3} is integral. Thus an optimal vertex
of the linear program $\max\{c^Tx \mid x \in P\}$ corresponds to a
maximum weight matching.
\begin{proof}[Proof of Lemma~\ref{po:lem:9}]
Let $G = (V,E)$ be a bipartite graph with bi-partition $V=V_1\cup V_2$.
Let $A'$ be a $k\times k$ sub-matrix of $A$. We are interested in the
determinant of $A$. Clearly, we can assume that $A$ does not contain
a column which contains only one $1$, since we simply consider the
sub-matrix $A''$ of $A'$, which emerges from developing the
determinant of $A'$ along this column. The determinant of $A'$ would
be $\pm1\cdot \det(A'')$.
Thus we can assume that each column contains exactly two ones. Now
we can order the rows of $A'$ such that the first rows correspond to
vertices of $V_1$ and then follow the rows corresponding to vertices
in $V_2$. This re-ordering only affects the sign of the
determinant. By summing up the rows of $A'$ in $V_1$ we obtain
exactly the same row-vector as we get by summing up the rows of $A'$
corresponding to $V_2$. This shows that $\det(A')=0$.
\end{proof}
\subsubsection{Flows}
Let $G=(V,A)$ be a directed graph, see
chapter~\ref{cha:short-paths-graphs}.
The \emph{node-edge incidence matrix of a directed graph}
is a matrix $A \in \{0,\pm1\}^{V\times E}$ with
\begin{equation}
\label{po:eq:8}
A(v,a) =
\begin{cases}
1 & \text{ if } v \text{ is the starting-node of } a, \\
-1 & \text{ if } v \text{ is the end-node of } a, \\
0 & \text{ otherwise.}
\end{cases}
\end{equation}
A \emph{feasible flow} $f$ of $G$ with capacities $u$ and in-out-flow $b$ is then
a solution $f \in \setR^A$ to the system $A\,f=b, \, 0\leq f\leq u$.
\begin{lemma}
\label{po:lem:10}
The node-edge incidence matrix $A$ of a directed graph is totally
unimodular.
\end{lemma}
\begin{proof}
Let $A'$ be a $k\times k$ sub-matrix of $A$. Again, we can assume that in
each column we have exactly one $1$ and one $-1$. Otherwise, we
develop the determinant along a column which does not have this
property. But then, the $A'$ is singular, since adding up all rows
of $A'$ yields the $0$-vector.
\end{proof}
A consequence is that, if the $b$-vector and the capacities $u$ are
integral and an optimal flow exists, then there exists an integer
optimal flow.
%We have seen that this follows from the cycle-cancelling
%algorithm, but total unimodularity gives another simple and elegant
%proof of this fact.
\subsection{Further applications of polyhedral theory}
\label{po:sec:furth-appl-polyh}
\subsubsection{Doubly stochastic matrices}
A matrix $A \in \setR^{n\times n}$ is \emph{doubly stochastic} if it satisfies
the following linear constraints
\begin{equation}
\label{po:eq:9}
\begin{array}{rcll}
\sum_{i=1}^n A(i,j) & = & 1, & \forall j=1,\ldots,n\\
\sum_{j=1}^n A(i,j) & = & 1, & \forall i=1,\ldots,n\\
A(i,j) & \geq & 0, & \forall 1 \leq i,j\leq n.
\end{array}
\end{equation}
A permutation matrix is a matrix which contains exactly one $1$ per
row and column, where the other entries are all $0$.
\begin{theorem}
\label{po:thr:17}
A matrix $A \in \setR^{n\times n}$ is doubly stochastic if and only if $A$ is
a convex combination of permutation matrices.
\end{theorem}
\begin{proof}
Since a permutation matrix satisfies the constraints~\eqref{po:eq:9},
then so does a convex combination of these constraints.
On the other hand it is enough to show that each vertex of the
polytope defined by the system~\eqref{po:eq:9} is integral and thus a
permutation matrix. However, the matrix defining the
system~\eqref{po:eq:9} is the node-edge incidence matrix of the
complete bipartite graph having $2n$ vertices. Since such a matrix
is totally unimodular, the theorem follows.
\end{proof}
\subsection{The matching polytope}
\label{po:sec:matching-polytope}
We now come to a deeper theorem concerning the convex hull of
matchings. We mentioned several times in the course that the maximum
weight matching problem can be solved in polynomial time. We are now
going to show a theorem of Edmonds~\cite{Edmonds65b} which provides a
complete description of the matching polytope and present the
proof by Lov\'asz~\cite{Lovasz79}.
Before we proceed let us inspect the symmetric difference $M_1\Delta M_2$
of two matchings of a graph $G$. If a vertex is adjacent to two edges
of $M_1\cup M_2$, then one of the two edges belongs to
$M_1$ and one belongs to $M_2$. Also, a vertex can never be adjacent
to three edges in $M_1 \cup M_2$. Edges which are both in $M_1$ and $M_2$
do not appear in the symmetric difference. We therefore have the
following lemma.
\begin{lemma}
\label{po:lem:11}
The symmetric difference $M_1\Delta M_2$ of two matchings decomposes
into node-disjoint paths and cycles, where the edges on these paths
and cycles alternate between $M_1$ and $M_2$.
\end{lemma}
The \emph{Matching polytope} $P(G)$ of an undirected graph $G = (V,E)$
is the convex hull of incidence vectors $\chi^M$ of matchings $M$ of
$G$.
\begin{figure}[htbp]
\centering
\includegraphics{figures/PicPolyhedra3.pdf}
\caption{Triangle}
\label{po:fig:triangle}
\end{figure}
The incidence vectors of matchings are exactly the $0/1$-vectors that
satisfy the following system of equations.
\begin{equation}
\label{po:eq:10}
\begin{array}{rcll}
\sum_{e \in \delta(v)} x(e) & \leq & 1 & \forall v \in V\\
x(e)& \geq & 0 & \forall e \in E.
\end{array}
\end{equation}
However the triangle (Figure~\ref{po:fig:triangle}) shows that the
corresponding polytope is not integral. The objective function $\max
\mathrm{1}^Tx$ has value $1.5$. However, one can show that a maximum
weight matching of an undirected graph can be computed in polynomial
time which is a result of Edmonds~\cite{Edmonds65}.
The following (Figure~\ref{po:fig:edmonds}) is an illustration of an
Edmonds inequality. Suppose that $U$ is an odd subset of the nodes $V$
of $G$ and let $M$ be a matching of $G$. The number of edges of $M$
with both endpoints in $U$ is bounded from above by $\lfloor|U|/2\rfloor$.
Thus the following inequality is valid for the integer points of the
polyhedron defined by~\eqref{po:eq:10}.
\begin{equation}
\label{po:eq:11}
\sum_{e \in E(U)} x(e) \leq\lfloor|U|/2\rfloor,\quad \quad \text{ for each } U\subseteq V,
\quad |U| \equiv 1 \pmod{2}.
\end{equation}
\begin{figure}[htbp]
\begin{center}
\includegraphics{figures/PicPolyhedra4.pdf}
\end{center}
\caption{Edmonds inequality.}
\label{po:fig:edmonds}
\end{figure}
The goal of this lecture is a proof of the following theorem.
\begin{theorem}[Edmonds 65]
\label{po:thr:18}
The matching polytope is described by the following inequalities:
\begin{enumerate}[i)]
\item $x(e) \geq0$ for each $e \in E$,
\item $\sum_{e \in \delta(v)} x(e) \leq 1$ for each $v \in V$,
\item $\sum_{e \in E(U)} x(e) \leq \lfloor |U| /2 \rfloor$ for each $U\subseteq V$
%\fromSlide*{2}{ Gomory Cut!}
\end{enumerate}
\end{theorem}
\begin{lemma}
\label{po:lem:11}
Let $G=(V,E)$ be connected and
let $w:E\longrightarrow\setR_{>0}$ be a weight-function. Denote the set of maximum
weight matchings of $G$ w.r.t. $w$ by $\eM(w)$. Then one of the following statements
must be true:
\begin{enumerate}[i)]
\item $\exists\,v \in V$ such that $\delta(v) \cap M \neq \emptyset$ for each $M \in \eM(w)$
\item $|M| = \lfloor|V| /2\rfloor$ for each $M \in \eM(w)$ and $|V|$ is odd.
\end{enumerate}
\end{lemma}
\begin{proof}
Suppose both $i)$ and $ii)$ do not hold.
Then there exists ${ M}\in \eM(w)$ leaving two exposed nodes $u$ and
$v$. Choose $ M$ such that the minimum distance between two exposed nodes
$u,v$ is minimized.
Now let $t$ be on shortest path from $u$ to $v$. The vertex $t$ cannot
be exposed.
\begin{figure}[htbp]
\centering
\begin{center}
\includegraphics{figures/PicPolyhedra5.pdf}
\end{center}
\caption{Shortest path between $u$ and $v$. }
\label{po:fig:short}
\end{figure}
Let ${ M'} \in \eM(w)$ leave $t$ exposed.
Both $u$ and $v$ are covered by ${ M'}$ because the distance to
$u$ or $v$ from $t$ is smaller than the distance of $u$ to $v$.
Consider the symmetric difference ${ M} \triangle { M'}$ which decomposes into
node disjoint paths and cycles.
The nodes $u, \, v$ and $t$ have degree one in ${M}\triangle{ M'}$. Let
$P$ be a path with endpoint $t$ in ${ M}\triangle{ M'}$
\begin{figure}
\centering
\includegraphics{figures/PicPolyhedra6.pdf}
\caption{Swapping colors. }\label{fig:2}
\end{figure}
If we swap colors on $P$, see Figure~\ref{fig:2}, we obtain matchings ${\wt{M}}$ and
${\wt{M'}}$ with
$w({ M}) + w({ M'}) = w({ \wt{M}})+w({ \wt{M'}}) $ and thus
${ \wt{M}} \in \eM(w)$.
The node $t$ is exposed in ${\wt{M}}$ and $u$ or $v$ is exposed in
${\wt{M}}$. This is a
contradiction to $u$ and $v$ being shortest distance exposed
vertices
\end{proof}
\begin{proof}[Proof of Theorem~\ref{po:thr:18}]
Let $w^Tx\leq\beta$ be a \emph{facet} of $P(G)$, we need to show that this
facet it is of the form
\begin{enumerate}[i)]
\item $x(e)\geq0$ for some $e \in E$\label{po:item:1}
\item $\sum_{e \in \delta(v)} x(e)\leq1$ for some $v \in V$\label{po:item:2}
\item $\sum_{e \in E(U)} x(e)\leq \lfloor|U|/2\rfloor$ for some $U \in P_{odd}$\label{po:item:3}
\end{enumerate}
To do so, we use the following method: One of the inequalities
\ref{po:item:1}), \ref{po:item:2}), \ref{po:item:3}) is satisfied with
equality by each $\chi^M, \,M \in \eM(w)$. This establishes the claim
since the matching polytope is full-dimensional and a facet is a
maximal face.
If $w(e)<0$ for some $e \in E$, then each $M \in \eM(w)$
satisfies $e \notin M$ and thus satisfies $x(e)\geq0$ with equality.
Thus we can assume that $w\geq0$.
Let $G^*=(V^*,E^*)$ be the graph induced by edges $e$ with $w(e)>0$. Each $M
\in \eM(w)$ contains maximum weight matching $M^* = M \cap E^*$ of
$G^*$ w.r.t. $w^*$.
If $G^*$ is not \emph{connected }, suppose that
$V^*=V_1\cup V_2$, where $V_1\cap V_2 = \emptyset$ and $V_1,V_2 \neq\emptyset$ and there
is no edge connecting $V_1$ and $V_2$, then
$w^Tx\leq\beta$ can be written as the sum of $w_1^Tx\leq\beta_1$ and
$w_2^Tx\leq\beta_2$, where $\beta_i$ is the maximum weight of a matching in
$V_i$ w.r.t. $w_i$, $i=1,2$, see Figure~\ref{blobs}. This would also contradict the fact
that $w^Tx\leq\beta$ is a facet, since it would follow from the previous
inequalities and thus would be a redundant
inequality.
\begin{figure}
\centering
\includegraphics{figures/PicPolyhedra7.pdf}
\caption{$G^*$ is connected. }\label{blobs}
\end{figure}
Now we can use Lemma~\ref{po:lem:11} for $G^*$.
\begin{enumerate}[i)]
\item $\exists v$ such that $\delta(v) \cap M = \emptyset$ for each $M \in
\eM(w)$. This means that each $M$ in $\eM(w)$ satisfies
\begin{displaymath}
\sum_{e \in \delta(v)} x(e)\leq1 \quad \text{ {with equality}}
\end{displaymath}
\item $|M\cap E^*| = \lfloor|V^*| /2\rfloor$ for each $M \in \eM(w)$ and $|V^*|$
is odd. This means that each $M$ in $\eM(w)$ satisfies
\begin{displaymath}
\sum_{e \in E(V^*) } x(e)\leq \lfloor|V^*|/2\rfloor \quad \text{
{with equality}}
\end{displaymath}
\end{enumerate}
\end{proof}