-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcosa_minimal_reaction_numbers.py
155 lines (137 loc) · 7.46 KB
/
cosa_minimal_reaction_numbers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""Calculates the minimal number of reactions per scenario."""
import matplotlib.pyplot as plt
import cobra
import copy
import pulp
import math
from cosa_get_all_tcosa_reaction_ids import get_all_tcosa_reaction_ids
from cosa_get_model_with_nadx_scenario import cosa_get_model_with_nadx_scenario
from cosa_get_suffix import cosa_get_suffix
from helper import json_load, json_write, json_zip_load
from typing import List
from optmdfpathway import (
STANDARD_R, STANDARD_T, get_optmdfpathway_base_problem,
add_differential_reactions_constraints, get_z_variable_status,
get_thermodynamic_bottlenecks
)
from optimization import perform_variable_minimization, perform_variable_maximization
from cosa_load_model_data import (
MIN_OPTMDF, load_model_data
)
from typing import Dict
from helper import ensure_folder_existence
def cosa_minimal_reaction_numbers(anaerobic: bool, expanded: bool, growth_epsilon: float = 0.01) -> None:
"""Calculates the minimal number of reactions per scenario.
Args:
anaerobic (bool): Is it anaerobic?
expanded (bool): Is it a 2-cofactor (False) model or not
growth_epsilon (float, optional): _description_. Defaults to 0.01.
"""
suffix = cosa_get_suffix(anaerobic, expanded)
figures_path = f"./cosa/results{suffix}/figures/"
ensure_folder_existence(figures_path)
all_base_ids, cobra_model, concentration_values_free, concentration_values_paper,\
standardconc_dG0_values, paperconc_dG0_values,\
num_nad_and_nadp_reactions, num_nad_base_ids, num_nadp_base_ids,\
ratio_constraint_data, nad_base_ids, nadp_base_ids, used_growth, zeroed_reaction_ids = load_model_data(anaerobic=anaerobic, expanded=expanded)
biomass_reaction_id = "BIOMASS_Ec_iML1515_core_75p37M"
original_cobra_model = copy.deepcopy(cobra_model)
for concentrations in ("STANDARDCONC", "VIVOCONC"):
print(f"CONCENTRATIONS: {concentrations}")
print(f"=CONCENTRATION RANGES: {concentrations}=")
if concentrations == "STANDARDCONC":
dG0_values = copy.deepcopy(standardconc_dG0_values)
used_concentration_values = concentration_values_free
elif concentrations == "VIVOCONC":
dG0_values = copy.deepcopy(paperconc_dG0_values)
used_concentration_values = concentration_values_paper
for target in ("OPTMDF", "OPTSUBMDF"):
print(f"TARGET: {target}")
print(f"===OPTIMIZATION TARGET: {target}===")
for distribution in ("WILDTYPE", "FLEXIBLE", "SINGLE_COFACTOR"):
print(f"DISTRIBUTION: {distribution}")
print(f"cosa/results{suffix}/runs/{target}_{concentrations}_{distribution}.json")
jsondata_invivo = json_zip_load(f"cosa/results{suffix}/runs/{target}_{concentrations}_{distribution}.json")
growth_rates = jsondata_invivo.keys()
report = ""
cobra_model = copy.deepcopy(original_cobra_model)
cobra_model = cosa_get_model_with_nadx_scenario(
nadx_scenario=distribution,
cobra_model=cobra_model,
)
optmdfpathway_base_problem = get_optmdfpathway_base_problem(
cobra_model=cobra_model,
dG0_values=dG0_values,
metabolite_concentration_values=used_concentration_values,
ratio_constraint_data=ratio_constraint_data,
R=STANDARD_R,
T=STANDARD_T,
extra_constraints=[],
sub_network_ids=get_all_tcosa_reaction_ids(cobra_model),
add_optmdf_bottleneck_analysis=False,
)
optmdfpathway_base_variables: Dict[str, pulp.LpVariable] = optmdfpathway_base_problem.variablesDict()
z_sum = 0.0
for reaction in get_all_tcosa_reaction_ids(cobra_model):
z_sum += optmdfpathway_base_variables[f"z_var_{reaction}"]
z_sum_var = pulp.LpVariable(
name=f"z_sum_var",
lowBound=-float("inf"),
upBound=float("inf"),
cat=pulp.LpContinuous,
)
optmdfpathway_base_problem += z_sum_var == z_sum
for growth_rate in growth_rates:
growth_rate_float = float(growth_rate.replace(",", "."))
optmdfpathway_base_variables[biomass_reaction_id].bounds(
growth_rate_float-growth_epsilon,
1e12,
)
if target == "OPTMDF":
min_target = jsondata_invivo[growth_rate]["values"]["var_B"] - 0.001
optmdfpathway_base_variables["var_B"].bounds(
min_target,
1e12,
)
elif target == "OPTSUBMDF":
min_target = jsondata_invivo[growth_rate]["values"]["var_B2"] - 0.001
optmdfpathway_base_variables["var_B"].bounds(
MIN_OPTMDF,
1e12,
)
optmdfpathway_base_variables["var_B2"].bounds(
min_target,
1e12,
)
print(f" @ µ [1/h] of {growth_rate_float} and min {target} of {min_target} kJ/mol")
report += f" @ µ [1/h] of {growth_rate_float} and min {target} of {min_target} kJ/mol\n"
print("RUN")
minimization_result = perform_variable_minimization(
optmdfpathway_base_problem,
"z_sum_var",
)
all_tcosas = get_all_tcosa_reaction_ids(cobra_model)
active_reactions = []
for var_name in minimization_result["values"].keys():
if not var_name.startswith("z_var_"):
continue
reac_id = var_name.replace("z_var_", "")
if reac_id not in all_tcosas:
continue
z_value = minimization_result["values"][var_name]
reaction_string = cobra_model.reactions.get_by_id(reac_id).reaction
if z_value > 0.1:
report_line = f"* {reac_id} | {round(dG0_values[reac_id]['dG0'], 3)} kJ/mol | {reaction_string}"
active_reactions.append(reac_id)
# print(report_line)
report += report_line + "\n"
report += f"Reached MDF: {minimization_result['values']['var_B']}\n"
report += f"Reached SubMDF: {minimization_result['values']['var_B2']}\n"
report += f"Minimal sum of active reactions: {len(active_reactions)}\n"
# print(f"Reached MDF: {minimization_result['values']['var_B']} kJ/mol")
# print(f"Reached SubMDF: {minimization_result['values']['var_B2']} kJ/mol")
aerobic = "anaerobic" if anaerobic else "aerobic"
with open(f"./cosa/min_reacs_{aerobic}_{distribution}_{target}_{concentrations}.txt", "w", encoding="utf-8") as f:
f.write(report)
cosa_minimal_reaction_numbers(anaerobic=False, expanded=False)
cosa_minimal_reaction_numbers(anaerobic=True, expanded=False)