-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·128 lines (99 loc) · 4.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""Trains a deep neural network against the notMNIST dataset.
Adapted from the MNIST Keras example here:
https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py
NOTE: This model requires a GPU to the model in a reasonable amount of time.
For a smaller model that trains better on a CPU, see [train.ipynb]
"""
from __future__ import division
import argparse
import os
import sys
from datetime import datetime
import keras
import numpy as np
from keras.callbacks import TensorBoard
from keras.layers import Conv2D, Dense, Dropout, Flatten, ZeroPadding2D, LeakyReLU, MaxPooling2D, BatchNormalization, ELU
from keras.models import Sequential
from sklearn.model_selection import train_test_split
def main(input_file, log_dir):
batch_size = 2048
num_classes = 10
epochs = 50
now = datetime.now().strftime('%Y-%m-%d_%H-%M')
# input image dimensions
img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)
with np.load(input_file) as f:
data = f['data']
labels = f['labels']
x_train, x_test, y_train, y_test = train_test_split(data, labels)
# Convert from 0-255 to 0-1
x_train /= 255
x_test /= 255
# Resize from (m, 28, 28) to (m, 28, 28, 1), since Keras always assumes the 4th
# dimension in case of RGB images, even if we're just doing B/W images.
x_train = x_train.reshape(x_train.shape[0], *input_shape)
x_test = x_test.reshape(x_test.shape[0], *input_shape)
print("Found %s records. Splitting into %s training and %s test records." % (
x_train.shape[0] + x_test.shape[0],
x_train.shape[0],
x_test.shape[0],
))
# Convert from numeric labels to one-hot encoding
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
# This model achieves better accuracy than the one in [train.ipynb],
# but takes much longer to train. Should not be run without access
# to a beefy GPU
model = Sequential([
ZeroPadding2D((2, 2), input_shape=input_shape),
# First layer of convolutional networks
Conv2D(64, kernel_size=(3, 3), activation='linear'), LeakyReLU(0.001),
Conv2D(64, kernel_size=(3, 3), activation='linear'), LeakyReLU(0.001),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.5),
# Let's try another layer
Conv2D(128, kernel_size=(3, 3), activation='linear'), LeakyReLU(0.001),
Conv2D(128, kernel_size=(3, 3), activation='linear'), LeakyReLU(0.001),
MaxPooling2D(pool_size=(2, 2)),
Dropout(0.5),
Flatten(),
Dense(4096, activation='linear'), LeakyReLU(0.001),
Dense(4096, activation='linear'), LeakyReLU(0.001),
Dropout(0.5),
Dense(num_classes, activation='softmax'),
])
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
print("Model Summary:")
print(model.summary())
# Declare tensorboard callback
tensorboard = TensorBoard(
log_dir=os.path.join(log_dir, now),
histogram_freq=0,
write_graph=True,
write_images=False,
)
# Train model on training set
try:
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[tensorboard])
except KeyboardInterrupt:
print("\n\nCaught KeyboardInterrupt, stopping training!")
# See how well it did on the test set
test_loss, test_accuracy = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', test_loss)
print('Test accuracy:', test_accuracy)
# Save model for later usage
model.save(os.path.join('models', '%s.h5' % now))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train model on notMNIST dataset.')
parser.add_argument('input_file', type=str, help='Input file to train on')
parser.add_argument('-l', '--log-dir', type=str, default='logs', help='Where to write tensorboard logs to')
args = parser.parse_args()
main(args.input_file, args.log_dir)