-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathresnet_chainer.py
140 lines (114 loc) · 4.73 KB
/
resnet_chainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions
import numpy as np
import random
# 前処理
# 書き方はこれを参考にした:https://github.com/yasunorikudo/chainer-DenseNet
class Preprocess(chainer.dataset.DatasetMixin):
def __init__(self, pairs):
self.pairs = pairs
def __len__(self):
return len(self.pairs)
def get_example(self, i):
x, y = self.pairs[i]
# label
y = np.array(y, dtype=np.int32)
# random crop
pad_x = np.zeros((3, 40, 40), dtype=np.float32)
pad_x[:, 4:36, 4:36] = x
top = random.randint(0, 8)
left = random.randint(0, 8)
x = pad_x[:, top:top+32, left:left+32]
# horizontal flip
if random.randint(0, 1):
x = x[:, :, ::-1]
return x, y
# Model
# ResBlock単体
class ResBlock(chainer.Chain):
# BN->ReLU->Conv->BN->ReLU->Conv をショートカットさせる(Kaimingらの研究による)
def __init__(self, channels):
super().__init__()
self.channels = channels
w = chainer.initializers.GlorotNormal()
with self.init_scope():
self.bn1 = L.BatchNormalization(channels)
self.conv1 = L.Convolution2D(None, channels, ksize=3, pad=1, initialW=w)
self.bn2 = L.BatchNormalization(channels)
self.conv2 = L.Convolution2D(None, channels, ksize=3, pad=1, initialW=w)
def __call__(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(out)))
return out + x
# オリジナルの論文に従って、サブサンプリングにPoolingではなくstride=2のConvを使う
class Subsumpling(chainer.Chain):
def __init__(self, output_channels):
super().__init__()
w = chainer.initializers.GlorotNormal()
with self.init_scope():
self.conv = L.Convolution2D(None, output_channels, ksize=1, stride=2, initialW=w)
def __call__(self, x):
return self.conv(x)
class ResNet(chainer.Chain):
def __init__(self, n):
super().__init__()
self.n = n
w = chainer.initializers.GlorotNormal()
with self.init_scope():
self.conv1 = L.Convolution2D(3, 16, ksize=3, pad=1, initialW=w) #3->16
self.rbs1 = self._make_resblocks(16, n)
self.pool1 = Subsumpling(32)
self.rbs2 = self._make_resblocks(32, n)
self.pool2 = Subsumpling(64)
self.rbs3 = self._make_resblocks(64, n)
self.fc = L.Linear(None, 10, initialW=w)
def _make_resblocks(self, channels, count):
layers = [ResBlock(channels) for i in range(count)]
return chainer.Sequential(*layers)
def __call__(self, x):
out = self.conv1(x)
out = self.rbs1(out)
out = self.pool1(out)
out = self.rbs2(out)
out = self.pool2(out)
out = self.rbs3(out)
out = F.average_pooling_2d(out, ksize=8) #最後は(8,8)
out = self.fc(out)
return out
def main(n, nb_epochs):
train, test = chainer.datasets.get_cifar10()
train = Preprocess(train)
test = Preprocess(test)
train_iter = chainer.iterators.SerialIterator(train, 128)
test_iter = chainer.iterators.SerialIterator(test, 100, repeat=False, shuffle=False)
### Parameters
device = 0 # -1:CPU, 0:GPU
###
net = chainer.links.Classifier(ResNet(n))
optimizer = chainer.optimizers.MomentumSGD(lr=0.01, momentum=0.9)
optimizer.setup(net)
optimizer.add_hook(chainer.optimizer.WeightDecay(0.0005))
updater = training.StandardUpdater(train_iter, optimizer, device=device)
trainer = training.Trainer(updater, (nb_epochs, "epoch"), out=f"chainer_n{n}")
val_interval = (1, "epoch")
log_interval = (1, "epoch")
# 学習率調整
def lr_shift():
if updater.epoch == int(nb_epochs*0.5) or updater.epoch == int(nb_epochs*0.75):
optimizer.lr *= 0.1
return optimizer.lr
trainer.extend(extensions.Evaluator(test_iter, net, device=device), trigger=val_interval)
trainer.extend(extensions.observe_value(
"lr", lambda _: lr_shift()), trigger=(1, "epoch"))
trainer.extend(extensions.LogReport(trigger=log_interval))
trainer.extend(extensions.PrintReport([
'elapsed_time', 'epoch', 'iteration', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'lr',
]), trigger=log_interval)
trainer.extend(extensions.ProgressBar(update_interval=50))
trainer.run()
if __name__ == "__main__":
main(3, 1)