Skip to content

Commit 1fa600d

Browse files
RGAT remove in-memory flag (mlcommons#2033)
Co-authored-by: Miro <[email protected]>
1 parent ded1712 commit 1fa600d

File tree

3 files changed

+8
-13
lines changed

3 files changed

+8
-13
lines changed

graph/R-GAT/README.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
This is the reference implementation for MLPerf Inference Graph Neural Network. The reference implementation currently uses Deep Graph Library (DGL), and pytorch as the backbone of the model.
44

5-
**Hardware requirements:** The minimun requirements to run this benchmark are ~600GB of RAM and ~2.3TB of disk. This requires to create a memory map for the graph features and not load them to memory all at once. If you want to load all the features to ram, you will need ~3TB and can be done by using the flag `--in-memory`
5+
**Hardware requirements:** The minimun requirements to run this benchmark are ~600GB of RAM and ~2.3TB of disk. This requires to create a memory map for the graph features and not load them to memory all at once.
66

77
## Supported Models
88

@@ -161,7 +161,7 @@ cm run script --tags=get,dataset,igbh,_full,_calibration --outdirname=<path to d
161161
cd $GRAPH_FOLDER
162162

163163
# Run the benchmark DGL
164-
python3 main.py --dataset igbh-dgl-tiny --dataset-path igbh/ --profile debug-dgl [--model-path <path_to_ckpt>] [--in-memory] [--device <cpu or gpu>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
164+
python3 main.py --dataset igbh-dgl-tiny --dataset-path igbh/ --profile debug-dgl [--model-path <path_to_ckpt>] [--device <cpu or gpu>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
165165
```
166166

167167

@@ -171,7 +171,7 @@ python3 main.py --dataset igbh-dgl-tiny --dataset-path igbh/ --profile debug-dgl
171171
cd $GRAPH_FOLDER
172172

173173
# Run the benchmark DGL
174-
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full [--model-path <path_to_ckpt>] [--in-memory] [--device <cpu or gpu>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
174+
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full [--model-path <path_to_ckpt>] [--device <cpu or gpu>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
175175
```
176176

177177
### Evaluate the accuracy
@@ -188,7 +188,7 @@ Not implemented yet
188188
#### Accuracy run
189189
Add the `--accuracy` to the command to run the benchmark
190190
```bash
191-
python3 main.py --dataset igbh --dataset-path igbh/ --accuracy --model-path model/ [--model-path <path_to_ckpt>] [--in-memory] [--device <cpu or gpu>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>] [--layout <COO, CSC or CSR>]
191+
python3 main.py --dataset igbh --dataset-path igbh/ --accuracy --model-path model/ [--model-path <path_to_ckpt>] [--device <cpu or gpu>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>] [--layout <COO, CSC or CSR>]
192192
```
193193

194194
**NOTE:** For official submissions you should submit the results of the accuracy run in a file called `accuracy.txt` with the following format:
@@ -209,7 +209,7 @@ docker run --rm -it -v $(pwd):/root rgat-cpu
209209
```
210210
Run benchmark inside the docker container:
211211
```bash
212-
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full --device cpu [--model-path <path_to_ckpt>] [--in-memory] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
212+
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full --device cpu [--model-path <path_to_ckpt>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
213213
```
214214

215215

@@ -225,7 +225,7 @@ docker run --rm -it -v $(pwd):/workspace/root --gpus all rgat-gpu
225225
Go inside the root folder and run benchmark inside the docker container:
226226
```bash
227227
cd root
228-
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full --device gpu [--model-path <path_to_ckpt>] [--in-memory] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
228+
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full --device gpu [--model-path <path_to_ckpt>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
229229
```
230230

231231
**NOTE:** For official submissions, this benchmark is required to run in equal issue mode. Please make sure that the flag `rgat.*.sample_concatenate_permutation` is set to one in the [mlperf.conf](../../loadgen/mlperf.conf) file when loadgen is built.

graph/R-GAT/igbh.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -131,7 +131,7 @@ def __init__(
131131
self,
132132
path,
133133
dataset_size="tiny",
134-
in_memory=True,
134+
in_memory=False,
135135
use_label_2K=False,
136136
with_edges=True,
137137
layout: Literal["CSC", "CSR", "COO"] = "COO",

graph/R-GAT/main.py

Lines changed: 1 addition & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -118,15 +118,11 @@ def get_args():
118118
"--dataset-path",
119119
required=True,
120120
help="path to the dataset")
121-
parser.add_argument(
122-
"--in-memory",
123-
action="store_true",
124-
help="path to the dataset")
125121
parser.add_argument(
126122
"--layout",
127123
default="COO",
128124
choices=["CSC", "CSR", "COO"],
129-
help="path to the dataset",
125+
help="layout of the dataset",
130126
)
131127
parser.add_argument(
132128
"--profile", choices=SUPPORTED_PROFILES.keys(), help="standard profiles"
@@ -363,7 +359,6 @@ def main():
363359
ds = dataset_class(
364360
data_path=args.dataset_path,
365361
name=args.dataset,
366-
in_memory=args.in_memory,
367362
layout=args.layout,
368363
type=args.dtype,
369364
**kwargs,

0 commit comments

Comments
 (0)