You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: graph/R-GAT/README.md
+6-6Lines changed: 6 additions & 6 deletions
Original file line number
Diff line number
Diff line change
@@ -2,7 +2,7 @@
2
2
3
3
This is the reference implementation for MLPerf Inference Graph Neural Network. The reference implementation currently uses Deep Graph Library (DGL), and pytorch as the backbone of the model.
4
4
5
-
**Hardware requirements:** The minimun requirements to run this benchmark are ~600GB of RAM and ~2.3TB of disk. This requires to create a memory map for the graph features and not load them to memory all at once. If you want to load all the features to ram, you will need ~3TB and can be done by using the flag `--in-memory`
5
+
**Hardware requirements:** The minimun requirements to run this benchmark are ~600GB of RAM and ~2.3TB of disk. This requires to create a memory map for the graph features and not load them to memory all at once.
6
6
7
7
## Supported Models
8
8
@@ -161,7 +161,7 @@ cm run script --tags=get,dataset,igbh,_full,_calibration --outdirname=<path to d
161
161
cd$GRAPH_FOLDER
162
162
163
163
# Run the benchmark DGL
164
-
python3 main.py --dataset igbh-dgl-tiny --dataset-path igbh/ --profile debug-dgl [--model-path <path_to_ckpt>] [--in-memory] [--device <cpu or gpu>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
164
+
python3 main.py --dataset igbh-dgl-tiny --dataset-path igbh/ --profile debug-dgl [--model-path <path_to_ckpt>] [--device <cpu or gpu>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full --device cpu [--model-path <path_to_ckpt>] [--in-memory] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
212
+
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full --device cpu [--model-path <path_to_ckpt>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
213
213
```
214
214
215
215
@@ -225,7 +225,7 @@ docker run --rm -it -v $(pwd):/workspace/root --gpus all rgat-gpu
225
225
Go inside the root folder and run benchmark inside the docker container:
226
226
```bash
227
227
cd root
228
-
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full --device gpu [--model-path <path_to_ckpt>] [--in-memory] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
228
+
python3 main.py --dataset igbh-dgl --dataset-path igbh/ --profile rgat-dgl-full --device gpu [--model-path <path_to_ckpt>] [--dtype <fp16 or fp32>] [--scenario <SingleStream, MultiStream, Server or Offline>]
229
229
```
230
230
231
231
**NOTE:** For official submissions, this benchmark is required to run in equal issue mode. Please make sure that the flag `rgat.*.sample_concatenate_permutation` is set to one in the [mlperf.conf](../../loadgen/mlperf.conf) file when loadgen is built.
0 commit comments