-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainingDataSet.py
117 lines (70 loc) · 3.89 KB
/
trainingDataSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import pickle
import time
import nltk
from nltk.classify.scikitlearn import SklearnClassifier
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.naive_bayes import MultinomialNB, BernoulliNB
from sklearn.svm import LinearSVC
from sklearn.tree import DecisionTreeClassifier
from Preprocessing import PreprocessingDataSet
pre = PreprocessingDataSet()
training_set, testing_set = pre.get_training_testing_dataset(training_percentage=0.5)
print(len(training_set), len(testing_set))
start=time.clock()
# training in all model to check better accuracy and saving model for future perdiction
classifier = nltk.NaiveBayesClassifier.train(training_set)
print("Original Naive Bayes Algo accuracy percent:", (nltk.classify.accuracy(classifier, testing_set)) * 100)
save_classifier = open("pickle_data_model_save/originalnaivebayes.pickle", "wb")
pickle.dump(classifier, save_classifier)
save_classifier.close()
print('time taken by NaiveBayesClassifier ',(time.clock()-start))
start=time.clock()
MNB_classifier = SklearnClassifier(MultinomialNB())
MNB_classifier.train(training_set)
print("MNB_classifier accuracy percent:", (nltk.classify.accuracy(MNB_classifier, testing_set)) * 100)
save_classifier = open("pickle_data_model_save/MNB_classifier.pickle", "wb")
pickle.dump(MNB_classifier, save_classifier)
save_classifier.close()
print('time taken by MultinomialNB ',(time.clock()-start))
start=time.clock()
BernoulliNB_classifier = SklearnClassifier(BernoulliNB())
BernoulliNB_classifier.train(training_set)
print("BernoulliNB_classifier accuracy percent:", (nltk.classify.accuracy(BernoulliNB_classifier, testing_set)) * 100)
save_classifier = open("pickle_data_model_save/BernoulliNB_classifier.pickle", "wb")
pickle.dump(BernoulliNB_classifier, save_classifier)
save_classifier.close()
print('time taken by BernoulliNB ',(time.clock()-start))
start=time.clock()
# in LogisticRegression_classifier we use hyperparameter C, which adjusts the regularization.
LogisticRegression_classifier = SklearnClassifier(LogisticRegression())
LogisticRegression_classifier.train(training_set)
print("LogisticRegression_classifier accuracy percent:",
(nltk.classify.accuracy(LogisticRegression_classifier, testing_set)) * 100)
save_classifier = open("pickle_data_model_save/LogisticRegression_classifier.pickle", "wb")
pickle.dump(LogisticRegression_classifier, save_classifier)
save_classifier.close()
print('time taken by LogisticRegression ',(time.clock()-start))
start=time.clock()
LinearSVC_classifier = SklearnClassifier(LinearSVC())
LinearSVC_classifier.train(training_set)
print("LinearSVC_classifier accuracy percent:", (nltk.classify.accuracy(LinearSVC_classifier, testing_set)) * 100)
save_classifier = open("pickle_data_model_save/LinearSVC_classifier.pickle", "wb")
pickle.dump(LinearSVC_classifier, save_classifier)
save_classifier.close()
print('time taken by LinearSVC ',(time.clock()-start))
start=time.clock()
SGDC_classifier = SklearnClassifier(SGDClassifier())
SGDC_classifier.train(training_set)
print("SGDClassifier accuracy percent:", nltk.classify.accuracy(SGDC_classifier, testing_set) * 100)
save_classifier = open("pickle_data_model_save/SGDC_classifier.pickle", "wb")
pickle.dump(SGDC_classifier, save_classifier)
save_classifier.close()
print('time taken by SGDClassifier ',(time.clock()-start))
start=time.clock()
decisionTreeClassifier = SklearnClassifier(DecisionTreeClassifier())
decisionTreeClassifier.train(training_set)
print("DecisionTreeClassifier accuracy percent:", nltk.classify.accuracy(decisionTreeClassifier, testing_set) * 100)
save_classifier = open("pickle_data_model_save/DecisionTreeClassifier.pickle", "wb")
pickle.dump(decisionTreeClassifier, save_classifier)
save_classifier.close()
print('time taken by DecisionTreeClassifier ',(time.clock()-start))