-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
227 lines (180 loc) · 8.33 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# flask API #
from flask import Flask, render_template, request, jsonify
import tensorflow as tf
import numpy as np
from pandas import Series
import pandas as pd
import random
# aisles = pd.read_csv('../aisles.csv')
# departments = pd.read_csv('../departments.csv')
# order_product_prior = pd.read_csv('../order_products__prior.csv')
# order_product_train = pd.read_csv('../order_products__train.csv')
# orders = pd.read_csv('../orders.csv')
# products = pd.read_csv('../products.csv')
id_name = pd.read_csv('./id_name.csv')
app = Flask(__name__) #flask 앱 초기화
####################### new_model 껍데기 정의는 앞에서 따로 불러오기 #################
import datetime
import os
class MaskedEmbeddingsAggregatorLayer(tf.keras.layers.Layer):
def __init__(self, agg_mode='sum', **kwargs):
super(MaskedEmbeddingsAggregatorLayer, self).__init__(**kwargs)
if agg_mode not in ['sum', 'mean']:
raise NotImplementedError('mode {} not implemented!'.format(agg_mode))
self.agg_mode = agg_mode
@tf.function
def call(self, inputs, mask=None):
masked_embeddings = tf.ragged.boolean_mask(inputs, mask)
if self.agg_mode == 'sum':
aggregated = tf.reduce_sum(masked_embeddings, axis=1)
elif self.agg_mode == 'mean':
aggregated = tf.reduce_mean(masked_embeddings, axis=1)
return aggregated
def get_config(self):
# this is used when loading a saved model that uses a custom layer
return {'agg_mode': self.agg_mode}
class L2NormLayer(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(L2NormLayer, self).__init__(**kwargs)
@tf.function
def call(self, inputs, mask=None):
if mask is not None:
inputs = tf.ragged.boolean_mask(inputs, mask).to_tensor()
return tf.math.l2_normalize(inputs, axis=-1)
def compute_mask(self, inputs, mask):
return mask
EMBEDDING_DIMS = 16
DENSE_UNITS = 64
DROPOUT_PCT = 0.1
ALPHA = 0.1
NUM_CLASSES = 49689
LEARNING_RATE = 0.1
input_user = tf.keras.Input(shape=(None, ), name='user')
input_product_hist = tf.keras.layers.Input(shape=(None,), name='product_hist')
input_order_dow_hist = tf.keras.layers.Input(shape=(None,), name='order_dow_hist')
input_order_hour_of_day_hist = tf.keras.Input(shape=(None, ), name='order_hour_of_day_hist')
# layer
features_embedding_layer = tf.keras.layers.Embedding(input_dim=NUM_CLASSES, output_dim=EMBEDDING_DIMS,
mask_zero=True, trainable=True, name='features_embeddings')
labels_embedding_layer = tf.keras.layers.Embedding(input_dim=NUM_CLASSES, output_dim=EMBEDDING_DIMS,
mask_zero=True, trainable=True, name='labels_embeddings')
avg_embeddings = MaskedEmbeddingsAggregatorLayer(agg_mode='mean', name='aggregate_embeddings')
dense_1 = tf.keras.layers.Dense(units=DENSE_UNITS, name='dense_1')
dense_2 = tf.keras.layers.Dense(units=DENSE_UNITS, name='dense_2')
dense_3 = tf.keras.layers.Dense(units=DENSE_UNITS, name='dense_3')
l2_norm_1 = L2NormLayer(name='l2_norm_1')
dense_output = tf.keras.layers.Dense(NUM_CLASSES, activation=tf.nn.softmax, name='dense_output')
# feature
features_embeddings = features_embedding_layer(input_user)
l2_norm_features = l2_norm_1(features_embeddings)
avg_features = avg_embeddings(l2_norm_features)
labels_product_embeddings = labels_embedding_layer(input_product_hist)
l2_norm_product = l2_norm_1(labels_product_embeddings)
avg_product = avg_embeddings(l2_norm_product)
labels_order_dow_embeddings = labels_embedding_layer(input_order_dow_hist)
l2_norm_order_dow = l2_norm_1(labels_order_dow_embeddings)
avg_order_dow = avg_embeddings(l2_norm_order_dow)
labels_order_hour_embeddings = labels_embedding_layer(input_order_hour_of_day_hist)
l2_norm_order_hour = l2_norm_1(labels_order_hour_embeddings)
avg_order_hour = avg_embeddings(l2_norm_order_hour)
concat_inputs = tf.keras.layers.Concatenate(axis=1)([avg_product,
avg_order_dow,
avg_order_hour
])
# Dense Layers
dense_1_features = dense_1(concat_inputs)
dense_1_relu = tf.keras.layers.ReLU(name='dense_1_relu')(dense_1_features)
dense_1_batch_norm = tf.keras.layers.BatchNormalization(name='dense_1_batch_norm')(dense_1_relu)
dense_2_features = dense_2(dense_1_relu)
dense_2_relu = tf.keras.layers.ReLU(name='dense_2_relu')(dense_2_features)
dense_2_batch_norm = tf.keras.layers.BatchNormalization(name='dense_2_batch_norm')(dense_2_relu)
dense_3_features = dense_3(dense_2_relu)
dense_3_relu = tf.keras.layers.ReLU(name='dense_3_relu')(dense_3_features)
dense_3_batch_norm = tf.keras.layers.BatchNormalization(name='dense_3_batch_norm')(dense_3_relu)
outputs = dense_output(dense_3_batch_norm)
#Optimizer
optimiser = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
#--- prep model
model = tf.keras.models.Model(
inputs=[input_product_hist,
input_order_dow_hist,
input_order_hour_of_day_hist
],
outputs=[outputs]
)
logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
#################################################################
model.load_weights('kur_weight')
##############################################################
products, datediff = [], []
def put_stocks(prod):
global products
products = prod
sold_out = []
def put_sold(s_out):
global sold_out
sold_out = s_out
@app.route('/stocks', methods=['POST'])
def stocks():
global products
params = request.get_json()
products = params['products'] #product id가 담긴 리스트
put_stocks(products)
return jsonify({'products': products})
@app.route('/products/soldout', methods=['POST'])
def sold():
global sold_out
params = request.get_json()
sold_out = params['sold'] #sold_out 된 물품들 리스트
put_sold(sold_out)
return jsonify({'sold_out': sold_out})
@app.route('/kurly-bag', methods=['POST'])
def predict():
global products
info = request.get_json()
# user_id = info['user_id'] #고객 id
prior_products = info['products'] #이전 구매목록 12개
# order_dow = info['order_dow'] #이전 구매 요일 12개 리스트
# order_hour_of_day = info['order_hour_of_day'] #이전 구매 시간 12개 리스트
df = pd.DataFrame(info, columns = ['products', 'order_dow', 'order_hour_of_day'])
## 물류 재고 상황 먼저 고려 ##
# ->고객 이전 구매 12번 내에 해당 상품을 구매한 이력이 있으면 먼저 컬리백으로 구성
products_set = set(products) # 24시간에 한번 업데이트
sold_set = set(sold_out) # 5분마다 업데이트
products = list(products_set - sold_set) # (4일 남은 재고 - 소진된 상품)으로 재고 데이터 업데이트
kurlybag = [] # 총 7개추천
num = 0
for prior_pd in prior_products[0]:
if num > 8:
break
if prior_pd in products:
kurlybag.append(prior_pd)
num += 1
## 후보군 생성 ##
pred = model.predict([tf.keras.preprocessing.sequence.pad_sequences(df['products']),
tf.keras.preprocessing.sequence.pad_sequences(df['order_dow']),
tf.keras.preprocessing.sequence.pad_sequences(df['order_hour_of_day'])
])
N = 15
candidate = np.sort((-pred).argsort()[:, :N])
candidate = candidate.flatten()
candidate[candidate > 35053] = 0 #data['product'].max()=35053
candidate = np.unique(candidate) #top 15개 상품 리스트
candidate = candidate.tolist()
if num < 8:
candidate = list(set(candidate)-set(kurlybag))
more = 8-num
kurlybag += candidate[:more]
kur_df = pd.DataFrame(columns = ['product_no', 'product_nm'])
for pd_no in kurlybag:
kur_df = kur_df.append(id_name.loc[id_name['product_no'] == pd_no])
price_lst = [3400, 4500, 5000, 5500, 6400, 7000, 7500, 7900, 8500, 9000, 9900, 10500, 11000, 12000, 12500, 13000]
pri = random.sample(price_lst, 7)
img_path = 'https://hallikurly.s3.ap-northeast-2.amazonaws.com/kurlybag/kurlybag_default_img.png'
kur_df['price'] = pri
kur_df['product_img_path'] = [img_path for _ in range(7)]
return kur_df.to_dict('records')
if __name__ == '__main__':
from waitress import serve
serve(app, host="0.0.0.0", port=5000)
#app.run(debug=True)