-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
253 lines (196 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import pandas as pd
import random
import pickle
import numpy as np
import tensorflow as tf
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
tf.config.experimental.set_memory_growth(gpus[0], True)
except RuntimeError as e:
print(e)
aisles = pd.read_csv('aisles.csv')
departments = pd.read_csv('departments.csv')
order_product_prior = pd.read_csv('order_products__prior.csv')
order_product_train = pd.read_csv('order_products__train.csv')
orders = pd.read_csv('orders.csv')
products = pd.read_csv('products.csv')
orders = orders.dropna()
random.seed(2021)
# 1만명의 유저만 샘플링 (첫시도)
user = random.sample(orders['user_id'][orders['eval_set']=='train'].unique().tolist(), 10000)
#user = orders['user_id'][orders['eval_set']=='train'].unique().tolist() #샘플링 안하고 시도 (실패)
# orders에서 test dataset 관련 기록(prior포함) 제외
orders_2 = orders[orders['user_id'].isin(user)]
order_product_prior = order_product_prior[order_product_prior['order_id'].isin(orders_2['order_id'])]
product_m = products.merge(aisles).merge(departments)
# product one-hot encoding data
product_enc = pd.get_dummies(product_m, columns=['aisle'], prefix=[None])
order_product = pd.concat([order_product_prior,order_product_train])
# 주문 항목 정보 : product_m + order_product
order_detail = order_product.merge(product_m,how='left') #.sample(n=100000, random_state=2021)
data = orders_2.merge(order_detail)#, on ='order_id')
## modeling ##
data['user_id'] = data['user_id'].astype(int)
data['product_id'] = data['product_id'].astype(int)
data['order_id'] = data['order_id'].astype(int)
data['days_since_prior_order'] = data['days_since_prior_order'].astype(int)
data = data.set_index(['user_id']).sort_index()
data = data.reset_index()
# 유저 인덱스 인코딩
user_ids = data["user_id"].unique().tolist()
user2user_encoded = {x: i for i, x in enumerate(user_ids)}
#userencoded2user = {i: x for i, x in enumerate(user_ids)}
# 주문 인덱스 인코딩
order_ids = data["order_id"].unique().tolist()
order2order_encoded = {x: i for i, x in enumerate(order_ids)}
#order_encoded2order = {i: x for i, x in enumerate(order_ids)}
# 상품 인덱스 인코딩
product_ids = data["product_id"].unique().tolist()
product2product_encoded = {x: i for i, x in enumerate(product_ids)}
#product_encoded2product = {i: x for i, x in enumerate(product_ids)}
# 상품 이름 인코딩
pd_name_ids = data["product_name"].unique().tolist()
pd_name2pd_name_encoded = {x: i for i, x in enumerate(pd_name_ids)}
#pd_name_encoded2pd_name = {i: x for i, x in enumerate(pd_name_ids)}
# 상품 대분류 인덱스 인코딩
department_ids = data["department_id"].unique().tolist()
department2department_encoded = {x: i for i, x in enumerate(department_ids)}
#department_encoded2department = {i: x for i, x in enumerate(department_ids)}
# 상품 소분류 인덱스 인코딩
aisle_ids = data["aisle_id"].unique().tolist()
aisle2aisle_encoded = {x: i for i, x in enumerate(aisle_ids)}
#aisle_encoded2aisle = {i: x for i, x in enumerate(aisle_ids)}
# 상품 대분류명 인덱스 인코딩
dept_name_ids = data["department"].unique().tolist()
dept_name2dept_name_encoded = {x: i for i, x in enumerate(dept_name_ids)}
#dept_name_encoded2dept_name = {i: x for i, x in enumerate(dept_name_ids)}
# 상품 소분류명 인덱스 인코딩
aisle_name_ids = data["aisle"].unique().tolist()
aisle_name2aisle_name_encoded = {x: i for i, x in enumerate(aisle_name_ids)}
# 인코딩으로 바꾸기
data["user"] = data["user_id"].map(user2user_encoded)
data["product"] = data["product_id"].map(product2product_encoded)
data["order"] = data["order_id"].map(order2order_encoded)
data["pd_name"] = data["product_name"].map(pd_name2pd_name_encoded)
order_hist = data.groupby(['user'])['order_id'].unique().apply(list).reset_index()
product_hist = data.groupby(['user'])['product_id'].apply(list).reset_index()
order_dow_hist = data.groupby(['user'])['order_dow'].apply(list).reset_index() # unique().적용해보기
order_hour_of_day_hist = data.groupby(['user'])['order_hour_of_day'].apply(list).reset_index()
days_since_prior_order_hist = data.groupby(['user'])['days_since_prior_order'].apply(list).reset_index()
data.groupby(['user'])['order_dow'].unique().apply(list)
order_product_hist = data.groupby(['order'])['product_id'].apply(list).reset_index()
user_data = data[['user','user_id']].merge(order_hist, how='left').merge(product_hist, how='left').merge(order_dow_hist, how='left').merge(order_hour_of_day_hist, how = 'left').merge(days_since_prior_order_hist,how='left') #eval_set
user_data = user_data.drop_duplicates('user') # 중복데이터 삭제
data_product_prior=data['product'][data['eval_set']=='prior']
user_data['predict_labels'] = user_data['product_id'].apply(lambda x: int(random.uniform(0,data['product_id'].max())))
train_data = user_data[(user_data.user>=30) &
(user_data.user<=39)]
test_data = user_data[(user_data.user>=40) &
(user_data.user<=59)]
######
# 하이퍼파라미터 정의
EMBEDDING_DIMS = 16
DENSE_UNITS = 64
DROPOUT_PCT = 0.1
ALPHA = 0.1
NUM_CLASSES = data["product_id"].max() + 2
LEARNING_RATE = 0.1
# custom layers
class MaskedEmbeddingsAggregatorLayer(tf.keras.layers.Layer):
def __init__(self, agg_mode='sum', **kwargs):
super(MaskedEmbeddingsAggregatorLayer, self).__init__(**kwargs)
if agg_mode not in ['sum', 'mean']:
raise NotImplementedError('mode {} not implemented!'.format(agg_mode))
self.agg_mode = agg_mode
@tf.function
def call(self, inputs, mask=None):
masked_embeddings = tf.ragged.boolean_mask(inputs, mask)
if self.agg_mode == 'sum':
aggregated = tf.reduce_sum(masked_embeddings, axis=1)
elif self.agg_mode == 'mean':
aggregated = tf.reduce_mean(masked_embeddings, axis=1)
return aggregated
def get_config(self):
# this is used when loading a saved model that uses a custom layer
return {'agg_mode': self.agg_mode}
class L2NormLayer(tf.keras.layers.Layer):
def __init__(self, **kwargs):
super(L2NormLayer, self).__init__(**kwargs)
@tf.function
def call(self, inputs, mask=None):
if mask is not None:
inputs = tf.ragged.boolean_mask(inputs, mask).to_tensor()
return tf.math.l2_normalize(inputs, axis=-1)
def compute_mask(self, inputs, mask):
return mask
# modeling
import tensorflow as tf
import datetime
import os
input_user = tf.keras.Input(shape=(None, ), name='user')
input_product_hist = tf.keras.layers.Input(shape=(None,), name='product_hist')
input_order_dow_hist = tf.keras.layers.Input(shape=(None,), name='order_dow_hist')
input_order_hour_of_day_hist = tf.keras.Input(shape=(None, ), name='order_hour_of_day_hist')
# layer 구성
features_embedding_layer = tf.keras.layers.Embedding(input_dim=NUM_CLASSES, output_dim=EMBEDDING_DIMS,
mask_zero=True, trainable=True, name='features_embeddings')
labels_embedding_layer = tf.keras.layers.Embedding(input_dim=NUM_CLASSES, output_dim=EMBEDDING_DIMS,
mask_zero=True, trainable=True, name='labels_embeddings')
avg_embeddings = MaskedEmbeddingsAggregatorLayer(agg_mode='mean', name='aggregate_embeddings')
dense_1 = tf.keras.layers.Dense(units=DENSE_UNITS, name='dense_1')
dense_2 = tf.keras.layers.Dense(units=DENSE_UNITS, name='dense_2')
dense_3 = tf.keras.layers.Dense(units=DENSE_UNITS, name='dense_3')
l2_norm_1 = L2NormLayer(name='l2_norm_1')
dense_output = tf.keras.layers.Dense(NUM_CLASSES, activation=tf.nn.softmax, name='dense_output')
# feature 투입
features_embeddings = features_embedding_layer(input_user)
l2_norm_features = l2_norm_1(features_embeddings)
avg_features = avg_embeddings(l2_norm_features)
labels_product_embeddings = labels_embedding_layer(input_product_hist)
l2_norm_product = l2_norm_1(labels_product_embeddings)
avg_product = avg_embeddings(l2_norm_product)
labels_order_dow_embeddings = labels_embedding_layer(input_order_dow_hist)
l2_norm_order_dow = l2_norm_1(labels_order_dow_embeddings)
avg_order_dow = avg_embeddings(l2_norm_order_dow)
labels_order_hour_embeddings = labels_embedding_layer(input_order_hour_of_day_hist)
l2_norm_order_hour = l2_norm_1(labels_order_hour_embeddings)
avg_order_hour = avg_embeddings(l2_norm_order_hour)
# 임베딩 벡터들 연결
concat_inputs = tf.keras.layers.Concatenate(axis=1)([avg_product,
avg_order_dow,
avg_order_hour
])
# Dense Layers
dense_1_features = dense_1(concat_inputs)
dense_1_relu = tf.keras.layers.ReLU(name='dense_1_relu')(dense_1_features)
dense_1_batch_norm = tf.keras.layers.BatchNormalization(name='dense_1_batch_norm')(dense_1_relu)
dense_2_features = dense_2(dense_1_relu)
dense_2_relu = tf.keras.layers.ReLU(name='dense_2_relu')(dense_2_features)
dense_2_batch_norm = tf.keras.layers.BatchNormalization(name='dense_2_batch_norm')(dense_2_relu)
dense_3_features = dense_3(dense_2_relu)
dense_3_relu = tf.keras.layers.ReLU(name='dense_3_relu')(dense_3_features)
dense_3_batch_norm = tf.keras.layers.BatchNormalization(name='dense_3_batch_norm')(dense_3_relu)
outputs = dense_output(dense_3_batch_norm)
#Optimizer
optimiser = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
#--- prep model
model = tf.keras.models.Model(
inputs=[input_product_hist,
input_order_dow_hist,
input_order_hour_of_day_hist
],
outputs=[outputs]
)
logdir = os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
model.compile(optimizer=optimiser, loss='sparse_categorical_crossentropy', metrics=['acc'])
# 학습(training)
history = model.fit([tf.keras.preprocessing.sequence.pad_sequences(train_data['product_id']),
tf.keras.preprocessing.sequence.pad_sequences(train_data['order_dow']),
tf.keras.preprocessing.sequence.pad_sequences(train_data['order_hour_of_day']) #+ 1e-10, dtype=float
],train_data['predict_labels'].values,
steps_per_epoch=1, epochs=300)
pickle.dump(model, open('model.pkl', 'wb'))