-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path05_dplyr.R
271 lines (182 loc) · 6.11 KB
/
05_dplyr.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#install.packages("ggplot2")
#install.packages("dplyr")
##5.1
##5.1.1
data(diamonds , package='ggplot2')
dim(head(diamonds , n=4))
library(magrittr)
diamonds %>% head(., n=4) %>% dim(.)
diamonds %>% head(n=4) %>% dim()
diamonds %>% head(n=4) %>% dim
diamonds %>% .$price %>% .[1:10]
diamonds %>% .[["price"]] %>% .[1:10]
class(diamonds)
library(dplyr)
diamonds
options(tibble.print_max = 5, tibble.print_min = 5)
diaTB <- as_tibble(diamonds[1:10, ])
diaDF <- as.data.frame(diamonds[1:10, ])
diaDF$pri # partial matching
diaDF[, 'pri'] # ERROR
diaTB$pri # NULL
diaTB[, 'pri'] # ERROR
df <- data.frame(a = c('Kim','Lee','Park'))
tb <- tibble(a = c('Kim','Lee','Park'))
class(df$a)
class(tb$a)
## 5.2 dplyr의 방식: 부분 선택(Subsetting)
## 5.2.1 dplyr 패키지
library(dplyr)
data(mtcars)
tb = as_tibble(mtcars)
## 5.2.2
tb[2:5, ]
slice(tb, 2:5)
tb %>% .[2:5, ]
tb %>% slice(., 2:5)
tb %>% slice(2:5)
tb %>% slice(c(2:3, 4, 5))
##5.2.3 논리 벡터를 사용하여 행 부분 참조
tb[tb$mpg>30, ]
filter(tb, mpg>30)
tb %>% filter(., mpg>30)
tb %>% filter(mpg>30)
## 5.2.4 열 이름이나 번호로 부분 참조
tb <- tb %>% slice(3:5)
tb[, c(1,3)]
select(tb, c(1,3))
tb %>% select(c(1,3))
tb[, c("cyl", "hp")]
select(tb, c("cyl", "hp"))
select(tb, c(cyl, hp))
tb %>% select(c("cyl", "hp"))
tb %>% select(c(cyl, hp))
tb %>% select("cyl", "hp")
tb %>% select(cyl, hp)
which(colnames(tb)=='hp')
which(colnames(tb)=='qsec')
tb[, which(colnames(tb)=='hp'):which(colnames(tb)=='qsec')]
tb %>% select(hp:qsec)
slice(tb, c(1, 2))
slice(tb, 1, 2)
##5.2.4.1 특정한 조건을 만족하는 열 이름 참조
## 구문 의미
## starts_with('ab') ab로 시작하는
## ends_with('yz') yz로 끝나는
## contains('ef') ef를 포함하는
## one_of(coln) 문자열 벡터 coln의 각 원소와 일치하는
## matches('..[cd]') 정규표현식 ..[cd]와 대응하는
tb3 <- tb %>% slice(1:3)
tb3
tb3 %>% select(starts_with('c'))
tb3 %>% select(starts_with('ca'))
tb3 %>% select(ends_with('p'))
tb3 %>% select(contains('c'))
colnm <- c('drat', 'qsec')
tb3 %>% select(one_of(colnm))
tb3 %>% select(matches('^(.s|.{4})'))
## 위아래 한쌍으로 dplyr 함수와 동일한 정규 표현식
tb %>% select(starts_with('c'))
tb[, grep('^c', colnames(tb))]
tb %>% select(ends_with('p'))
tb[, grep('p$', colnames(tb))]
tb %>% select(contains('c'))
tb[, grep('c', colnames(tb))]
## 5.2.5 특정한 열 이름 제외
tb %>% select(-cyl, -qsec)
tb %>% select(-c(cyl, qsec))
tb %>% select(-starts_with('c'))
tb %>% select(-contains('c'))
## 5.3 dplyr의 방식 : 수정
## 5.3.1 새로운 열 추가
library(dplyr)
data(mtcars)
tb = as_tibble(mtcars)
tb2 <- tb %>% select(hp, cyl, qsec) %>% slice(1:3)
tb2 %>% mutate(hp/cyl)
tb2 %>% mutate(hpPerCyl = hp/cyl)
tb2 %>% mutate(hpPerCyl = hp/cyl, V2 = hp*qsec)
tb2$`hp/cyl`
tb3 <- tb2 %>% mutate(hp/cyl)
tb3$`hp/cyl`
tb$V2 = with(tb, hp*qsec)
tb[c('V1', 'V2')] = data.frame(tb$hp/tb$cyl, tb$hp*tb$qsec)
## 5.3.2 정렬하기
## dplyr 함수와 기존의 방법 비교
tb %>% arrange(cyl)
tb[order(tb$cyl), ]
tb %>% arrange(desc(cyl))
tb[order(tb$cyl, decreasing = T), ]
tb3 %>% arrange(cyl, desc(qsec))
## 5.3.3 요약하기
tb %>% summarise(mean(hp))
tb %>% summarize(V1 = mean(hp))
tb %>% summarise(hpMean = mean(hp), qsecMedian =median(qsec))
tb %>% summarise(newVar1 = mean(hp) + median(qsec))
tb %>% summarise(newVar1 = mean(hp), newVar2 = median(qsec))
tb %>% summarise(v1 = mean(hp), v2 = median(qsec), v3 = v1 + v2)
data.frame(v1 = mean(tb$hp), v2 = median(tb$qsec), v3 = v1 + v2)
# Error in v1 + v2 : non-numeric argument to binary operator
## 5.3.4 집단별로 나누기
tb3 %>% group_by(cyl)
tb3_grp <- tb3 %>% group_by(cyl)
class(tb3_grp)
## 5.3.5 집단별로 요약하기
tb %>% group_by(am) %>% summarise(mean(qsec))
## 5.3.6 집단별로 나눈 티블에 대해 함수 적용하기
tb %>% summarise(range(hp))
#Error: Column `range(hp)` must be length 1 (a summary value), not 2
## 책과 다른 부분 3 : summarise 에 벡터가 아니라 range 를 넣은 경우 오류가 나온다고 적혀있지만
## 최근 버전에서는 실제로 결과값이 나옴
tb %>% group_by(am) %>% do(head(., n=2))
tb %>% group_by(am) %>% do(summary(.))
#Error: Results 1, 2 must be data frames, not table
#Run `rlang::last_error()` to see where the error occurred.
tb %>% group_by(am) %>%
do(as.data.frame(summary(.))) %>%
slice(1:3)
## 5.3.7 dplyr을 활용하여 데이터 가공하기 종합
## 선별 및 가공 절차
##tb %>% select() %>% filter() %>% group_by() %>%
##summarise(), do(), arrange(, .by_group=T)
## 5.4 dplyr의 기타 편의 기능
## 5.4.1 _all
library(dplyr)
mtcars %>% mutate(exp(qsec)) %>% head(3)
mtcars %>%
mutate(expMpg=exp(mpg), expCyl=exp(cyl), expDisp=exp(disp),
expHp=exp(hp), expDrat=exp(drat), expWt=exp(wt),
expQsec=exp(qsec), expVs=exp(vs), expAm=exp(am),
expGear=exp(gear), expCarb=exp(carb)) %>%
head(n=3)
mtcars %>% mutate_all(exp) %>% head(n=3)
##5.4.2 _at과 _if
## _all _at _if
## select select_all select_at select_if
## mutate mutate_all mutate_at mutate_if
## transmute transmute_all transmute_at transmute_if
## group_by group_by_all group_by_at group_by_if
## summarise summarise_all summarise_at summarise_if
options(digits=4)
colnm = c('cyl', 'disp', 'drat', 'carb')
mtcars %>% mutate_at(colnm, exp) %>% head(n=3)
mtcars %>%
select(starts_with('c'), starts_with('d')) %>%
mutate_all(exp) %>%
head(n=3)
mtcars %>%
mutate_at(vars(starts_with('c'), starts_with('d')),
exp) %>%
head(n=3)
mtcars %>%
mutate_if(function(x) { sum(x)<100 }, exp ) %>%
head(n=3)
mtcars %>%
transmute(expCarb = exp(carb)) %>% head(n=3)
mtcars %>% transmute_if(function(x) sum(x)<100, exp) %>% head(n=3)
mtcars %>% transmute_if(funs(sum(.) <100), exp) %>% head(n=3)
##`funs()` is deprecated as of dplyr 0.8.0
mtcars %>%
mutate_if(funs(sum(.) >= 100),
funs(paste(.,"+",sep=""))) %>% head(n=3)
mtcars %>% transmute_at(vars(starts_with('d')), exp) %>% head(n=3)