-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathfit_scaling.py
147 lines (127 loc) · 5.35 KB
/
fit_scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""
Script for calculating the scaling factors used to even out GemNet activation
scales. This generates the `scale_file` specified in the config, which is then
read in at model initialization.
This only needs to be run if the hyperparameters or model change
in places were it would affect the activation scales.
"""
import logging
import os
import sys
import numpy as np
import torch
from tqdm import trange
from mdsim.common.flags import flags
from mdsim.common.registry import registry
from mdsim.common.utils import build_config, setup_imports, setup_logging
from mdsim.models.gemnet.layers.scaling import AutomaticFit
from mdsim.models.gemnet.utils import write_json
if __name__ == "__main__":
setup_logging()
num_batches = 25 # number of batches to use to fit a single variable
parser = flags.get_parser()
args, override_args = parser.parse_known_args()
config = build_config(args, override_args)
assert config["model"]["name"].startswith("gemnet")
config["logger"] = "tensorboard"
if args.distributed:
raise ValueError(
"I don't think this works with DDP (race conditions)."
)
setup_imports()
scale_file = config["model"]["scale_file"]
logging.info(f"Run fitting for model: {args.identifier}")
logging.info(f"Target scale file: {scale_file}")
def initialize_scale_file(scale_file):
# initialize file
preset = {"comment": args.identifier}
write_json(scale_file, preset)
if os.path.exists(scale_file):
logging.warning(f"Already found existing file: {scale_file}")
flag = input(
"Do you want to continue and overwrite the file (1), "
"only fit the variables not fitted yet (2), or exit (3)? "
)
if str(flag) == "1":
logging.info("Overwriting the current file.")
initialize_scale_file(scale_file)
elif str(flag) == "2":
logging.info("Only fitting unfitted variables.")
else:
print(flag)
logging.info("Exiting script")
sys.exit()
else:
initialize_scale_file(scale_file)
AutomaticFit.set2fitmode()
# compose dataset configs.
train_data_cfg = config['dataset']
dataset_name = train_data_cfg['name']
if dataset_name == 'md17':
train_data_cfg['src'] = os.path.join(train_data_cfg['src'], train_data_cfg['molecule'])
train_data_cfg['name'] = 'md17-' + train_data_cfg['molecule']
src = os.path.join(train_data_cfg['src'], train_data_cfg['size'])
train_data_cfg['src'] = os.path.join(src, 'train')
norm_stats = np.load(os.path.join(src, 'metadata.npy'), allow_pickle=True).item()
if not train_data_cfg['normalize_labels']:
# mean of energy is arbitrary. should always substract.
# this is done in <trainer.load_datasets>.
train_data_cfg['target_mean'] = norm_stats['e_mean']
train_data_cfg['target_std'] = 1.
train_data_cfg['grad_target_mean'] = 0.
train_data_cfg['grad_target_std'] = 1.
train_data_cfg['normalize_labels'] = True
else:
train_data_cfg['target_mean'] = float(norm_stats['e_mean'])
train_data_cfg['target_std'] = float(norm_stats['e_std'])
train_data_cfg['grad_target_mean'] = float(norm_stats['f_mean'])
train_data_cfg['grad_target_std'] = float(norm_stats['f_std'])
# train, val, test
config['dataset'] = [train_data_cfg,
{'src': os.path.join(src, 'val')}, ]
# initialize trainer.
trainer = registry.get_trainer_class(
config.get("trainer", "energy")
)(
task=config["task"],
model=config["model"],
dataset=config["dataset"],
optimizer=config["optim"],
identifier=config["identifier"],
timestamp_id=config.get("timestamp_id", None),
run_dir=config.get("run_dir", None),
is_debug=config.get("is_debug", False),
print_every=config.get("print_every", 100),
seed=config.get("seed", 0),
logger=config.get("logger", "wandb"),
local_rank=config["local_rank"],
amp=config.get("amp", False),
cpu=config.get("cpu", False),
slurm=config.get("slurm", {}),
no_energy=config.get("no_energy", False)
)
# Fitting loop
logging.info("Start fitting")
if not AutomaticFit.fitting_completed():
with torch.no_grad():
trainer.model.eval()
for _ in trange(len(AutomaticFit.queue) + 1):
assert (
trainer.val_loader is not None
), "Val dataset is required for making predictions"
for i, batch in enumerate(trainer.val_loader):
with torch.cuda.amp.autocast(
enabled=trainer.scaler is not None
):
out = trainer._forward(batch)
loss = trainer._compute_loss(out, batch)
del out, loss
if i == num_batches:
break
current_var = AutomaticFit.activeVar
if current_var is not None:
current_var.fit() # fit current variable
else:
print("Found no variable to fit. Something went wrong!")
assert AutomaticFit.fitting_completed()
logging.info(f"Fitting done. Results saved to: {scale_file}")