-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_xmap.py
155 lines (126 loc) · 4.77 KB
/
test_xmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from functools import partial
from jax.sharding import Mesh, PartitionSpec
import argparse
import jax
import jax.numpy as jnp
import flax
from jax.experimental.pjit import pjit
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", type=bool, default=False)
parser.add_argument("--bindings", type=str, default="cpp")
args = parser.parse_args()
if args.bindings == "cpp":
import jax_flash_attn
print(jax_flash_attn.__file__)
from jax_flash_attn import xmap_run_mha
elif args.bindings == "rust":
import jflash_attn
print(jflash_attn.__file__)
from jflash_attn import xmap_run_mha
else:
raise ValueError('unsupported bindings "{args.bindings}", use "cpp" or "rust"')
mesh = Mesh(jax.local_devices(), ("q",))
def attn_einsum(q, k, v, mask=None):
softmax_scale = q.shape[-1] ** -0.5
qk = jnp.einsum("bqhd,bkhd->bhqk", q, k)
if mask is not None:
qk = qk + jnp.log(mask)
attn_weights = jax.nn.softmax(qk * softmax_scale, axis=-1)
attn = jnp.einsum("bhqk,bkhd->bqhd", attn_weights, v)
return attn
def test_fwd(qkv_shape, max_err, is_causal):
_b_size, seqlen, _num_heads, head_dim = qkv_shape
rng_q = jax.random.PRNGKey(0)
q = jax.random.normal(rng_q, qkv_shape, dtype=jnp.bfloat16)
rng_k = jax.random.PRNGKey(1)
k = jax.random.normal(rng_k, qkv_shape, dtype=jnp.bfloat16)
rng_v = jax.random.PRNGKey(2)
v = jax.random.normal(rng_v, qkv_shape, dtype=jnp.bfloat16) / seqlen
mask = None
if is_causal:
mask = jnp.tril(jnp.ones((seqlen, seqlen)))
softmax_scale = head_dim**-0.5
# attn_mha = xmap_run_mha(q, k, v, is_causal=is_causal, softmax_scale=softmax_scale, device_count=jax.local_device_count())
pjitted = pjit(
partial(
xmap_run_mha,
is_causal=is_causal,
softmax_scale=softmax_scale,
device_count=jax.local_device_count(),
),
# Shard x by batch dimension and replicate weight on all devices.
in_shardings=(
PartitionSpec("q", None, None, None),
PartitionSpec("q", None, None, None),
PartitionSpec("q", None, None, None),
),
# Shard the output by batch dimension.
out_shardings=PartitionSpec("q", None, None, None),
)
attn_mha = pjitted(q, k, v)
attn_ein = attn_einsum(q, k, v, mask=mask)
attn_flax = flax.linen.dot_product_attention(q, k, v, mask=mask)
diff_mha_ein = (attn_mha - attn_ein).max()
diff_mha_flax = (attn_mha - attn_flax).max()
diff_ein_flax = (attn_ein - attn_flax).max()
if args.verbose:
print("fwd", diff_mha_ein, diff_mha_flax, diff_ein_flax)
if not (diff_mha_ein <= max_err): # be cautious about handling nans
print(
"FAIL fwd",
qkv_shape,
diff_mha_ein,
diff_mha_flax,
diff_ein_flax,
is_causal,
)
def test_bwd(qkv_shape, max_err, is_causal):
_b_size, seqlen, _num_heads, head_dim = qkv_shape
rng_q = jax.random.PRNGKey(0)
q = jax.random.normal(rng_q, qkv_shape, dtype=jnp.float16)
rng_k = jax.random.PRNGKey(1)
k = jax.random.normal(rng_k, qkv_shape, dtype=jnp.float16)
rng_v = jax.random.PRNGKey(2)
v = jax.random.normal(rng_v, qkv_shape, dtype=jnp.float16)
mask = None
if is_causal:
mask = jnp.tril(jnp.ones((seqlen, seqlen)))
def loss_mha(q, k, v):
softmax_scale = head_dim**-0.5
predictions = xmap_run_mha(
q,
k,
v,
is_causal=is_causal,
softmax_scale=softmax_scale,
device_count=jax.local_device_count(),
)
return jnp.sum(predictions)
loss_mha_grad = jax.grad(loss_mha, (0, 1, 2))
def loss_flax(q, k, v):
predictions = flax.linen.dot_product_attention(q, k, v, mask=mask)
return jnp.sum(predictions)
loss_flax_grad = jax.grad(loss_flax, (0, 1, 2))
dq_mha, dk_mha, dv_mha = loss_mha_grad(q, k, v)
dq_flax, dk_flax, dv_flax = loss_flax_grad(q, k, v)
dq_diff = ((dq_mha - dq_flax) ** 2).mean()
dk_diff = ((dk_mha - dk_flax) ** 2).mean()
dv_diff = ((dv_mha - dv_flax) ** 2).mean()
if args.verbose:
print("bwd", dq_diff, dk_diff, dv_diff)
if not (
dq_diff <= max_err and dk_diff <= max_err and dv_diff <= max_err
): # be cautious about nans.
print("FAIL bwd", qkv_shape, dq_diff, dk_diff, dv_diff, is_causal)
TEST_CASES = [
((1, 20, 16, 32), 1e-3),
((16, 100, 28, 64), 2e-4),
((16, 512, 32, 128), 1e-4),
((21, 50, 17, 160), 5e-4),
]
with mesh:
for _qkv, _max_err in TEST_CASES:
test_fwd(_qkv, _max_err, is_causal=False)
test_fwd(_qkv, _max_err, is_causal=True)
test_bwd(_qkv, _max_err, is_causal=False)
test_bwd(_qkv, _max_err, is_causal=True)