-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinference.py
399 lines (304 loc) · 14.2 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import torch
import CARZero
import pandas as pd
import json
import numpy as np
from utils import *
import os
from sklearn.preprocessing import MultiLabelBinarizer
def obtain_simr(image_path, text_path):
df = pd.read_csv(image_path)
with open(text_path, 'r') as f:
cls_prompts = json.load(f)
# load model
device = "cuda" if torch.cuda.is_available() else "cpu"
CARZero_model = CARZero.load_CARZero(name="CARZero_vit_b_16", device=device)
# process input images and class prompts
## batchsize
bs = 1024
image_list = split_list(df['Path'].tolist(), bs)
processed_txt = CARZero_model.process_class_prompts(cls_prompts, device)
for i, img in enumerate(image_list):
processed_imgs = CARZero_model.process_img(img, device)
# zero-shot classification on 1000 images
similarities = CARZero.dqn_shot_classification(
CARZero_model, processed_imgs, processed_txt)
if i == 0:
similar = similarities
else:
similar = pd.concat([similar, similarities], axis=0)
return similar
def tripple_openi_rusult_merge(predict_csv, label_file_path):
pathologies = [
# NIH
"Atelectasis",
"Cardiomegaly",
"Effusion",
"Infiltration",
"Mass",
"Nodule",
"Pneumonia",
"Pneumothorax",
## "Consolidation",
"Edema",
"Emphysema",
"Fibrosis",
"Pleural_Thickening",
"Hernia",
# ---------
"Fracture",
"Opacity",
"Lesion",
# ---------
"Calcified Granuloma",
"Granuloma",
# ---------
"No_Finding",
]
mapping = dict()
mapping["Pleural_Thickening"] = ["pleural thickening"]
mapping["Infiltration"] = ["Infiltrate"]
mapping["Atelectasis"] = ["Atelectases"]
# Load data
csv = pd.read_csv(label_file_path)
csv = csv.replace(np.nan, "-1")
gt = []
for pathology in pathologies:
mask = csv["labels_automatic"].str.contains(pathology.lower())
if pathology in mapping:
for syn in mapping[pathology]:
# print("mapping", syn)
mask |= csv["labels_automatic"].str.contains(syn.lower())
gt.append(mask.values)
gt = np.asarray(gt).T
gt = gt.astype(np.float32)
# Rename pathologies
pathologies = np.char.replace(pathologies, "Opacity", "Lung Opacity")
pathologies = np.char.replace(pathologies, "Lesion", "Lung Lesion")
## Rename by myself
pathologies = np.char.replace(pathologies, "Pleural_Thickening", "pleural thickening")
pathologies = np.char.replace(pathologies, "Infiltration", "Infiltrate")
pathologies = np.char.replace(pathologies, "Atelectasis", "Atelectases")
gt[np.where(np.sum(gt, axis=1) == 0), -1] = 1
label = gt[:, :-1]
predict = pd.read_csv(predict_csv).values
head, medium, tail = obtaion_LT_multi_label_distribution(label)
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict[:, head], label[:, head])
print(f"Head AUC: {macro_auc}")
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict[:, medium], label[:, medium])
print(f"Medium AUC: {macro_auc}")
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict[:, tail], label[:, tail])
print(f"Tail AUC: {macro_auc}")
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict, label)
print(f"Total AUC: {macro_auc}")
micro_prc, macro_prc = calculate_micro_macro_auprc(label, predict)
print("Micro AUPRC: {:.4f}, Macro AUPRC: {:.4f}".format(micro_prc, macro_prc))
for i, k in enumerate(pathologies[:-1]):
print(f"{k}: {per_auc[i]}")
def tripple_padchest_rusult_merge(predict_csv, label_file_path):
test_query = ['atelectasis', 'cardiomegaly', 'consolidation', 'pulmonary edema', 'pneumonia']
with open(label_file_path, "r") as file:
data = json.load(file)
label = []
key = data.keys()
for k in key:
label += data[k]
unique_label = list(set(label))
# Sort the unique strings with stable sorting
sorted_strings = sorted(unique_label, key=lambda x: (x, label.index(x)))
index = sorted_strings.index('normal')
labels = [ data[k] for k in key ]
# 创建MultiLabelBinarizer对象
mlb = MultiLabelBinarizer(classes=sorted_strings)
# 使用fit_transform()方法进行One-Hot编码
encoded_labels = mlb.fit_transform(labels)
predict = pd.read_csv(predict_csv).values
pre = np.zeros((predict.shape[0] , predict.shape[1]))
for i in range(predict.shape[0]):
logit = predict[i]
ind = np.argmax(logit)
pre[i, ind] = 1
encoded_labels = np.delete(encoded_labels, index, axis=1)
# 删除normal
sorted_strings.remove('normal')
## 查找test_query的index
test_query_index = []
for i in test_query:
test_query_index.append(sorted_strings.index(i))
head, medium, tail = obtaion_LT_multi_label_distribution(encoded_labels)
count = np.sum(encoded_labels, axis=0)
print(np.asanyarray(sorted_strings)[tail])
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict[:, head], encoded_labels[:, head])
print(f"Head AUC: {macro_auc}")
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict[:, medium], encoded_labels[:, medium])
print(f"Medium AUC: {macro_auc}")
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict[:, tail], encoded_labels[:, tail])
print(f"Tail AUC: {macro_auc}")
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict, encoded_labels)
# pd.DataFrame(per_auc, index=sorted_strings).to_csv('padchest_auc.csv')
print(f"Total AUC: {macro_auc}")
micro_prc, macro_prc = calculate_micro_macro_auprc(encoded_labels, predict)
print("Micro AUPRC: {:.4f}, Macro AUPRC: {:.4f}".format(micro_prc, macro_prc))
# 打印test_query的AUC
for i in test_query_index:
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict[:, i], encoded_labels[:, i])
print(f"{sorted_strings[i]} AUC: {macro_auc}")
n_classes = encoded_labels.shape[1]
tail_classes = []
auc_scores = []
macro_precisions = []
macro_recalls = []
for i in range(n_classes):
# 计算每个类别的正例数目
positive_count = np.sum(encoded_labels[:, i])
# 如果正例数目少于10,这是一个tail类别
if positive_count <= 10:
tail_classes.append(i)
# 计算并存储该类别的AUC
auc_score = roc_auc_score(encoded_labels[:, i], predict[:, i])
auc_scores.append(auc_score)
precision, recall, _ = precision_recall_curve(encoded_labels[:, i], predict[:, i])
macro_precisions.append(precision)
macro_recalls.append(recall)
macro_auprc = np.mean([auc(recall, precision) for precision, recall in zip(macro_precisions, macro_recalls)])
print("Padhcest20 AUROC: {}".format(np.mean(auc_scores)))
print("Padhcest20 AUPRC: {}".format(macro_auprc))
# 第一步:统计所有类别的正例数目
class_positive_counts = np.sum(encoded_labels, axis=0)
# 第三步:从tail类别中选出正例数目最多的top 100个类别
top_100_tail_classes = np.argsort(class_positive_counts)[:100]
auc_scores = []
macro_precisions = []
macro_recalls = []
# 第四步:对这些top 100个tail类别计算AUC和AUPRC
for class_idx in top_100_tail_classes:
auc_score = roc_auc_score(encoded_labels[:, class_idx], predict[:, class_idx])
auc_scores.append(auc_score)
precision, recall, _ = precision_recall_curve(encoded_labels[:, class_idx], predict[:, class_idx])
macro_precisions.append(precision)
macro_recalls.append(recall)
macro_auprc = np.mean([auc(recall, precision) for precision, recall in zip(macro_precisions, macro_recalls)])
# 输出结果
print("Top 100 Tail Classes AUROC: {}".format(np.mean(auc_scores)))
print("Top 100 Tail Classes AUPRC: {}".format(macro_auprc))
def triple_Chexpert14_result(predict_csv,label_file_path):
csv_head = ['path', 'Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Lung Mass', 'Lung Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema', 'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia']
df_test = pd.read_csv(label_file_path, sep=' ', names=csv_head)
key = csv_head[1:]
predict = pd.read_csv(predict_csv).values
label = df_test[key].values
pre = np.zeros((predict.shape[0] , predict.shape[1]))
for i in range(predict.shape[0]):
logit = predict[i]
ind = np.argmax(logit)
pre[i, ind] = 1
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict, label)
print(f"Total AUC: {macro_auc}")
micro_prc, macro_prc = calculate_micro_macro_auprc(label, predict)
print("Micro AUPRC: {:.4f}, Macro AUPRC: {:.4f}".format(micro_prc, macro_prc))
for disease, auc in zip(key, per_auc):
print(f"{disease}: {auc}")
save_macro_auprc_plot(label, predict, predict_csv.replace('.csv', '.png'))
print(f"Save {predict_csv.replace('.csv', '.png')}")
def triple_Chexpert5_result(predict_csv, label_file_path):
key = ['Atelectasis', 'Cardiomegaly', 'Consolidation', 'Edema', 'Pleural Effusion']
df_test = pd.read_csv(label_file_path)
predict = pd.read_csv(predict_csv).values
label = df_test[key].values
pre = np.zeros((predict.shape[0] , predict.shape[1]))
for i in range(predict.shape[0]):
logit = predict[i]
ind = np.argmax(logit)
pre[i, ind] = 1
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict, label)
print(f"Total AUC: {macro_auc}")
micro_prc, macro_prc = calculate_micro_macro_auprc(label, predict)
print("Micro AUPRC: {:.4f}, Macro AUPRC: {:.4f}".format(micro_prc, macro_prc))
for disease, auc in zip(key, per_auc):
print(f"{disease}: {auc}")
def triple_ChestXDet10_result(predict_csv, label_file_path):
with open(label_file_path, 'r') as f:
data = json.load(f)
all_path = []
all_label = []
for d in data:
all_path.append(d['file_name'])
all_label.append(d['syms'])
sorted_strings = ['Atelectasis', 'Calcification', 'Consolidation', 'Effusion', 'Emphysema', 'Fibrosis', 'Fracture', 'Mass', 'Nodule', 'Pneumothorax']
# 创建MultiLabelBinarizer对象
mlb = MultiLabelBinarizer(classes=sorted_strings)
# 使用fit_transform()方法进行One-Hot编码
label = mlb.fit_transform(all_label)
label = np.asarray(label)
# images_path = df['path'].tolist()
predict = pd.read_csv(predict_csv).values
pre = np.zeros((predict.shape[0] , predict.shape[1]))
for i in range(predict.shape[0]):
logit = predict[i]
ind = np.argmax(logit)
pre[i, ind] = 1
micro_f1, macro_f1, weighted_f1 = eval_F1(pre, label)
macro_auc, micro_auc, weighted_auc, per_auc = eval_auc(predict, label)
print(f"Total AUC: {macro_auc}")
micro_prc, macro_prc = calculate_micro_macro_auprc(label, predict)
print("Micro AUPRC: {:.4f}, Macro AUPRC: {:.4f}".format(micro_prc, macro_prc))
for disease, auc in zip(sorted_strings, per_auc):
print(f"{disease}: {auc}")
def triple_chexpert5x200_result(predict_csv, label_file_path):
df = pd.read_csv(label_file_path)
head = ['Atelectasis', 'Cardiomegaly', 'Consolidation', 'Edema', 'Pleural Effusion']
label = df[head].values
predict = pd.read_csv(predict_csv).values
predict = softmax(predict, axis=1)
acc = accuracy_score(label.argmax(1), predict.argmax(1))
print(acc)
# 计算每个类别的精度
for i, disease in enumerate(head):
disease_label = label[:, i]
disease_predict = predict[:, i].round()
disease_acc = accuracy_score(disease_label, disease_predict)
print(f"Accuracy for {disease}: {disease_acc}")
if __name__ == '__main__':
images = [
'./Dataset/OpenI/openi_multi_label_image.csv',
'./Dataset/PadChest/padchest_multi_label_image.csv',
'./Dataset/ChestXray14/chestxray14_test_image.csv',
'./Dataset/Chexpert/chexpert5_test_image.csv',
'./Dataset/ChestXDet10/chestXDet10_test_image.csv',
'./Dataset/Chexpert_5x200/chexpert_5x200_newpath.csv'
]
texts = [
'./Dataset/OpenI/openi_multi_label_text.json',
'./Dataset/PadChest/padchest_multi_label_text.json',
'./Dataset/ChestXray14/chestxray14_test_text.json',
'./Dataset/Chexpert/chexpert5_test_text.json',
'./Dataset/ChestXDet10/chestXDet10_test_text.json',
'./Dataset/Chexpert_5x200/chexpert_5x200_text.json'
]
result_file_name = 'test'
os.makedirs('./Performance/'+ result_file_name, exist_ok=True)
save_csvs = [
'./Performance/'+ result_file_name +'/Openi.csv',
'./Performance/'+ result_file_name +'/Padchest.csv',
'./Performance/'+ result_file_name +'/ChestXray14.csv',
'./Performance/'+ result_file_name +'/Chexpert5.csv',
'./Performance/'+ result_file_name +'/ChestXDet10.csv',
'./Performance/'+ result_file_name +'/chexpert_5x200.csv'
]
for i, (img, txt, savecsv) in enumerate(zip(images, texts, save_csvs)):
start = time.time()
similarities = obtain_simr(img, txt)
similarities.to_csv(savecsv, index=False)
print(time.time() - start)
print('Openi')
tripple_openi_rusult_merge(save_csvs[0], './Dataset/OpenI/custom.csv')
print('Padchest')
tripple_padchest_rusult_merge(save_csvs[1], "./Dataset/PadChest/manual_image.json")
print('ChestXray14')
triple_Chexpert14_result(save_csvs[2], './Dataset/ChestXray14/test_list.txt')
print('Chexpert5')
triple_Chexpert5_result(save_csvs[3], './Dataset/Chexpert/test_labels.csv')
print('ChestXDet10')
triple_ChestXDet10_result(save_csvs[4], './Dataset/ChestXDet10/test.json')
print('chexpert5x200')
triple_chexpert5x200_result(save_csvs[5], './Dataset/Chexpert_5x200/chexpert_5x200_newpath.csv')