|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import pandas as pd\n", |
| 10 | + "import glob\n", |
| 11 | + "import deepl\n", |
| 12 | + "from dotenv import load_dotenv\n", |
| 13 | + "import os\n", |
| 14 | + "load_dotenv() \n", |
| 15 | + "\n", |
| 16 | + "# df = pd.read_excel('data/nlmyo/processed/diag.xlsx')\n", |
| 17 | + "# # Read the text content from the filename column and add it to a new column\n", |
| 18 | + "# df[\"filepath\"] = df[\"filename\"].apply(lambda x: \"data/nlmyo/processed/\" + x)\n", |
| 19 | + "# df['raw_text'] = df['filepath'].apply(lambda x: open(x, 'r').read())\n", |
| 20 | + "\n", |
| 21 | + "\n", |
| 22 | + "# translator = deepl.Translator(os.getenv(\"DEEPL_KEY\")) \n", |
| 23 | + "# df['deepl_translation'] = df['raw_text'].apply(lambda x: translator.translate_text(x, target_lang=\"EN-US\").text)\n", |
| 24 | + "# save df to csv file\n", |
| 25 | + "# df.to_csv('data/nlmyo/processed/diag_translated.csv', index=False)" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "code", |
| 30 | + "execution_count": null, |
| 31 | + "metadata": {}, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "import numpy as np\n", |
| 35 | + "from embetter.external import CohereEncoder, OpenAIEncoder\n", |
| 36 | + "from embetter.grab import ColumnGrabber\n", |
| 37 | + "from sklearn.pipeline import make_pipeline \n", |
| 38 | + "import pandas as pd\n", |
| 39 | + "from dotenv import load_dotenv\n", |
| 40 | + "import os\n", |
| 41 | + "\n", |
| 42 | + "from cohere import Client\n", |
| 43 | + "\n", |
| 44 | + "# load_dotenv() \n", |
| 45 | + "# client = Client(os.getenv(\"COHERE_KEY\"))\n", |
| 46 | + "# # This pipeline grabs the `text` column from a dataframe\n", |
| 47 | + "\n", |
| 48 | + "# df = pd.read_csv('data/nlmyo/processed/diag_translated.csv')\n", |
| 49 | + "\n", |
| 50 | + "# text_emb_pipeline = make_pipeline(\n", |
| 51 | + "# ColumnGrabber(\"deepl_translation\"),\n", |
| 52 | + "# CohereEncoder(client=client, model=\"large\")\n", |
| 53 | + "# )\n", |
| 54 | + "\n", |
| 55 | + "# X = text_emb_pipeline.fit_transform(df, df['diag_simple'])\n", |
| 56 | + "# np.save('data/nlmyo/processed/report_translated_embed_cohere.npy', X)" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "import numpy as np\n", |
| 66 | + "from embetter.external import CohereEncoder, OpenAIEncoder\n", |
| 67 | + "from embetter.grab import ColumnGrabber\n", |
| 68 | + "from sklearn.pipeline import make_pipeline \n", |
| 69 | + "import pandas as pd\n", |
| 70 | + "from dotenv import load_dotenv\n", |
| 71 | + "import os\n", |
| 72 | + "\n", |
| 73 | + "import openai\n", |
| 74 | + "\n", |
| 75 | + "# load_dotenv() \n", |
| 76 | + "\n", |
| 77 | + "# openai.organization = os.getenv(\"OPENAI_ORG\")\n", |
| 78 | + "# openai.api_key = os.getenv(\"OPENAI_KEY\")\n", |
| 79 | + "# # This pipeline grabs the `text` column from a dataframe\n", |
| 80 | + "\n", |
| 81 | + "# df = pd.read_csv('data/nlmyo/processed/diag_translated.csv')\n", |
| 82 | + "\n", |
| 83 | + "# text_emb_pipeline = make_pipeline(\n", |
| 84 | + "# ColumnGrabber(\"deepl_translation\"),\n", |
| 85 | + "# OpenAIEncoder(model=\"text-embedding-ada-002\")\n", |
| 86 | + "# )\n", |
| 87 | + "\n", |
| 88 | + "# X = text_emb_pipeline.fit_transform(df, df['diag_simple'])\n", |
| 89 | + "# np.save('data/nlmyo/processed/report_translated_embed_openai.npy', X)" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": null, |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "import numpy as np\n", |
| 99 | + "import pandas as pd\n", |
| 100 | + "from sklearn.metrics import accuracy_score\n", |
| 101 | + "from sklearn.model_selection import StratifiedKFold, cross_val_score\n", |
| 102 | + "from sklearn.linear_model import LogisticRegression\n", |
| 103 | + "from sklearn.dummy import DummyClassifier\n", |
| 104 | + "\n", |
| 105 | + "#### Import the data\n", |
| 106 | + "df = pd.read_csv('data/nlmyo/processed/diag_translated.csv')\n", |
| 107 | + "Y = df['diag_simple'].values\n", |
| 108 | + "X_cohere = np.load('data/nlmyo/processed/report_translated_embed_cohere.npy') \n", |
| 109 | + "X_openai = np.load('data/nlmyo/processed/report_translated_embed_openai.npy')\n", |
| 110 | + "\n", |
| 111 | + "# Remove CFTD and unclear diagnosis\n", |
| 112 | + "df['diag_simple'].value_counts()\n", |
| 113 | + "df['diag_simple'] = df['diag_simple'].replace('CFTD', 'UNCLEAR')\n", |
| 114 | + "# Drop the rows with unclear diagnosis\n", |
| 115 | + "df = df[df['diag_simple'] != 'UNCLEAR']\n", |
| 116 | + "Y = df['diag_simple'].values\n", |
| 117 | + "# Do the same for the X array based on the df index\n", |
| 118 | + "X_cohere = X_cohere[df.index]\n", |
| 119 | + "X_openai = X_openai[df.index]\n", |
| 120 | + "cv_fold = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": null, |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "clf_dummy = DummyClassifier(strategy='prior')\n", |
| 130 | + "cv_scores_dummy = cross_val_score(clf_dummy, X_cohere, Y, cv=cv_fold)\n", |
| 131 | + "print(\"Dummy Classifier Results:\")\n", |
| 132 | + "print(f\"All CV Scores: {cv_scores_dummy}\")\n", |
| 133 | + "print(f\"Mean CV Score: {np.mean(cv_scores_dummy)}\")\n", |
| 134 | + "print(f\"Standard Deviation CV Score: {np.std(cv_scores_dummy)}\")" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": null, |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [], |
| 142 | + "source": [ |
| 143 | + "clf = LogisticRegression(max_iter=3000)\n", |
| 144 | + "cv_scores = cross_val_score(clf, X_cohere, Y, cv=cv_fold)\n", |
| 145 | + "print(\"Results with Logistic Regression and Cohere Embeddings on English Translated Reports:\")\n", |
| 146 | + "print(f\"All CV Scores: {cv_scores}\")\n", |
| 147 | + "print(f\"Mean CV Score: {np.mean(cv_scores)}\")\n", |
| 148 | + "print(f\"Standard Deviation CV Score: {np.std(cv_scores)}\")" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "code", |
| 153 | + "execution_count": null, |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [], |
| 156 | + "source": [ |
| 157 | + "clf = LogisticRegression(max_iter=3000)\n", |
| 158 | + "cv_scores = cross_val_score(clf, X_openai, Y, cv=cv_fold)\n", |
| 159 | + "print(\"Results with Logistic Regression and OpenAI Embeddings on English Translated Reports:\")\n", |
| 160 | + "print(f\"All CV Scores: {cv_scores}\")\n", |
| 161 | + "print(f\"Mean CV Score: {np.mean(cv_scores)}\")\n", |
| 162 | + "print(f\"Standard Deviation CV Score: {np.std(cv_scores)}\")" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": null, |
| 168 | + "metadata": {}, |
| 169 | + "outputs": [], |
| 170 | + "source": [ |
| 171 | + "from sklearn.base import BaseEstimator\n", |
| 172 | + "from sklearn.model_selection import GridSearchCV\n", |
| 173 | + "from sklearn.pipeline import Pipeline\n", |
| 174 | + "\n", |
| 175 | + "from sklearn.linear_model import LogisticRegression\n", |
| 176 | + "from sklearn.neural_network import MLPClassifier\n", |
| 177 | + "from sklearn.neighbors import KNeighborsClassifier\n", |
| 178 | + "from sklearn.svm import SVC\n", |
| 179 | + "from sklearn.gaussian_process import GaussianProcessClassifier\n", |
| 180 | + "from sklearn.ensemble import HistGradientBoostingClassifier\n", |
| 181 | + "from sklearn.tree import DecisionTreeClassifier\n", |
| 182 | + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", |
| 183 | + "from sklearn.naive_bayes import GaussianNB\n", |
| 184 | + "\n", |
| 185 | + "class DummyEstimator(BaseEstimator):\n", |
| 186 | + " def fit(self): pass\n", |
| 187 | + " def score(self): pass\n", |
| 188 | + "\n", |
| 189 | + "\n", |
| 190 | + "# Create a pipeline\n", |
| 191 | + "pipe = Pipeline([('clf', DummyEstimator())]) # Placeholder Estimator\n", |
| 192 | + "\n", |
| 193 | + "# Candidate learning algorithms and their hyperparameters\n", |
| 194 | + "search_space = [{'clf': [LogisticRegression()],\n", |
| 195 | + " 'clf__max_iter': [1500]},\n", |
| 196 | + " {'clf': [GaussianNB()],},\n", |
| 197 | + " {'clf': [MLPClassifier()],\n", |
| 198 | + " 'clf__max_iter': [500]},\n", |
| 199 | + " {'clf': [KNeighborsClassifier()],},\n", |
| 200 | + " {'clf': [SVC()],},\n", |
| 201 | + " {'clf': [GaussianProcessClassifier()],},\n", |
| 202 | + " {'clf': [HistGradientBoostingClassifier()],},\n", |
| 203 | + " {'clf': [DecisionTreeClassifier()],},\n", |
| 204 | + " {'clf': [RandomForestClassifier()],},\n", |
| 205 | + " {'clf': [AdaBoostClassifier()],},\n", |
| 206 | + " ]\n", |
| 207 | + "\n", |
| 208 | + "\n", |
| 209 | + "# Create grid search \n", |
| 210 | + "gs = GridSearchCV(pipe, search_space, scoring=\"accuracy\", cv=cv_fold)\n", |
| 211 | + "gs.fit(X_cohere, Y)\n", |
| 212 | + "df_cv_search = pd.DataFrame(gs.cv_results_)\n", |
| 213 | + "df_cv_search.to_csv('data/nlmyo/processed/report_translated_embed_cohere_gridsearch.csv')\n", |
| 214 | + "df_cv_search" |
| 215 | + ] |
| 216 | + }, |
| 217 | + { |
| 218 | + "cell_type": "code", |
| 219 | + "execution_count": null, |
| 220 | + "metadata": {}, |
| 221 | + "outputs": [], |
| 222 | + "source": [ |
| 223 | + "from sklearn.base import BaseEstimator\n", |
| 224 | + "from sklearn.model_selection import GridSearchCV\n", |
| 225 | + "from sklearn.pipeline import Pipeline\n", |
| 226 | + "\n", |
| 227 | + "from sklearn.linear_model import LogisticRegression\n", |
| 228 | + "from sklearn.neural_network import MLPClassifier\n", |
| 229 | + "from sklearn.neighbors import KNeighborsClassifier\n", |
| 230 | + "from sklearn.svm import SVC\n", |
| 231 | + "from sklearn.gaussian_process import GaussianProcessClassifier\n", |
| 232 | + "from sklearn.ensemble import HistGradientBoostingClassifier\n", |
| 233 | + "from sklearn.tree import DecisionTreeClassifier\n", |
| 234 | + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", |
| 235 | + "from sklearn.naive_bayes import GaussianNB\n", |
| 236 | + "\n", |
| 237 | + "class DummyEstimator(BaseEstimator):\n", |
| 238 | + " def fit(self): pass\n", |
| 239 | + " def score(self): pass\n", |
| 240 | + "\n", |
| 241 | + "# Create a pipeline\n", |
| 242 | + "pipe = Pipeline([('clf', DummyEstimator())]) # Placeholder Estimator\n", |
| 243 | + "\n", |
| 244 | + "# Candidate learning algorithms and their hyperparameters\n", |
| 245 | + "search_space = [{'clf': [LogisticRegression()],\n", |
| 246 | + " 'clf__max_iter': [1500]},\n", |
| 247 | + " {'clf': [GaussianNB()],},\n", |
| 248 | + " {'clf': [MLPClassifier()],\n", |
| 249 | + " 'clf__max_iter': [1000]},\n", |
| 250 | + " {'clf': [KNeighborsClassifier()],},\n", |
| 251 | + " {'clf': [SVC()],},\n", |
| 252 | + " {'clf': [GaussianProcessClassifier()],},\n", |
| 253 | + " {'clf': [HistGradientBoostingClassifier()],},\n", |
| 254 | + " {'clf': [DecisionTreeClassifier()],},\n", |
| 255 | + " {'clf': [RandomForestClassifier()],},\n", |
| 256 | + " {'clf': [AdaBoostClassifier()],},\n", |
| 257 | + " ]\n", |
| 258 | + "\n", |
| 259 | + "\n", |
| 260 | + "# Create grid search \n", |
| 261 | + "gs = GridSearchCV(pipe, search_space, scoring=\"accuracy\", cv=cv_fold)\n", |
| 262 | + "gs.fit(X_openai, Y)\n", |
| 263 | + "df_cv_search = pd.DataFrame(gs.cv_results_)\n", |
| 264 | + "df_cv_search.to_csv('data/nlmyo/processed/report_translated_embed_cohere_gridsearch.csv')\n", |
| 265 | + "df_cv_search" |
| 266 | + ] |
| 267 | + } |
| 268 | + ], |
| 269 | + "metadata": { |
| 270 | + "kernelspec": { |
| 271 | + "display_name": ".venv", |
| 272 | + "language": "python", |
| 273 | + "name": "python3" |
| 274 | + }, |
| 275 | + "language_info": { |
| 276 | + "codemirror_mode": { |
| 277 | + "name": "ipython", |
| 278 | + "version": 3 |
| 279 | + }, |
| 280 | + "file_extension": ".py", |
| 281 | + "mimetype": "text/x-python", |
| 282 | + "name": "python", |
| 283 | + "nbconvert_exporter": "python", |
| 284 | + "pygments_lexer": "ipython3", |
| 285 | + "version": "3.8.16" |
| 286 | + }, |
| 287 | + "orig_nbformat": 4, |
| 288 | + "vscode": { |
| 289 | + "interpreter": { |
| 290 | + "hash": "72f151f06f73a7f1387c41c20c6e81dd1f2de7c0f647fc647e5076786050674c" |
| 291 | + } |
| 292 | + } |
| 293 | + }, |
| 294 | + "nbformat": 4, |
| 295 | + "nbformat_minor": 2 |
| 296 | +} |
0 commit comments