|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import pandas as pd\n", |
| 10 | + "\n", |
| 11 | + "df = pd.read_csv('../data/muscle_atlas/muscle_atlas_2_7_filt_triple_full.csv')\n", |
| 12 | + "df.head()" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "ATP_IMAGE_DF = df[df[\"Staining method\"] == \"ATP 9.4\"]\n", |
| 22 | + "ATP_IMAGE_NAME = ATP_IMAGE_DF[\"Number\"].tolist()\n", |
| 23 | + "IMAGE_INDEX = 189\n", |
| 24 | + "# show the first image in the list using the image name\n", |
| 25 | + "from IPython.display import Image\n", |
| 26 | + "Image(filename='../data/muscle_atlas/images/' + ATP_IMAGE_NAME[IMAGE_INDEX])" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": null, |
| 32 | + "metadata": {}, |
| 33 | + "outputs": [], |
| 34 | + "source": [ |
| 35 | + "from myoquant.src.common_func import is_gpu_availiable,load_cellpose,run_cellpose\n", |
| 36 | + "import matplotlib.pyplot as plt\n", |
| 37 | + "try:\n", |
| 38 | + " from imageio.v2 import imread\n", |
| 39 | + "except ImportError:\n", |
| 40 | + " from imageio import imread\n", |
| 41 | + "\n", |
| 42 | + "image_array = imread('../data/muscle_atlas/images/' + ATP_IMAGE_NAME[IMAGE_INDEX])\n", |
| 43 | + "model_cellpose = load_cellpose()\n", |
| 44 | + "mask_cellpose = run_cellpose(image_array, model_cellpose)\n", |
| 45 | + "plt.imshow(mask_cellpose)" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "from skimage.measure import regionprops_table\n", |
| 55 | + "\n", |
| 56 | + "plt.imshow(mask_cellpose)\n", |
| 57 | + "props_cellpose = regionprops_table(\n", |
| 58 | + " mask_cellpose,\n", |
| 59 | + " properties=[\n", |
| 60 | + " \"label\",\n", |
| 61 | + " \"area\",\n", |
| 62 | + " \"centroid\",\n", |
| 63 | + " \"eccentricity\",\n", |
| 64 | + " \"bbox\",\n", |
| 65 | + " \"image\",\n", |
| 66 | + " \"perimeter\",\n", |
| 67 | + " \"feret_diameter_max\",\n", |
| 68 | + " ],\n", |
| 69 | + ")\n", |
| 70 | + "df_cellpose = pd.DataFrame(props_cellpose)\n", |
| 71 | + "df_cellpose.head()" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": null, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "import numpy as np\n", |
| 81 | + "all_cell_median_intensity = []\n", |
| 82 | + "for index in range(len(df_cellpose)):\n", |
| 83 | + " single_cell_img = image_array[\n", |
| 84 | + " df_cellpose.iloc[index, 5] : df_cellpose.iloc[index, 7],\n", |
| 85 | + " df_cellpose.iloc[index, 6] : df_cellpose.iloc[index, 8],\n", |
| 86 | + " ].copy()\n", |
| 87 | + "\n", |
| 88 | + " single_cell_mask = df_cellpose.iloc[index, 9].copy()\n", |
| 89 | + " single_cell_img[~single_cell_mask] = 0\n", |
| 90 | + " # Calculate median pixel intensity of the cell but ignore 0 values\n", |
| 91 | + " single_cell_median_intensity = np.median(single_cell_img[single_cell_img > 0])\n", |
| 92 | + " all_cell_median_intensity.append(single_cell_median_intensity)\n" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": null, |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [], |
| 100 | + "source": [ |
| 101 | + "from scipy.stats import gaussian_kde\n", |
| 102 | + "\n", |
| 103 | + "# Build a \"density\" function based on the dataset\n", |
| 104 | + "# When you give a value from the X axis to this function, it returns the according value on the Y axis\n", |
| 105 | + "density = gaussian_kde(all_cell_median_intensity)\n", |
| 106 | + "density.covariance_factor = lambda : .25\n", |
| 107 | + "density._compute_covariance()\n", |
| 108 | + "\n", |
| 109 | + "# Create a vector of 256 values going from 0 to 256:\n", |
| 110 | + "xs = np.linspace(0, 255, 256)\n", |
| 111 | + "\n", |
| 112 | + "# Set the figure size\n", |
| 113 | + "plt.figure(figsize=(8, 4))\n", |
| 114 | + "\n", |
| 115 | + "# Make the chart\n", |
| 116 | + "# We're actually building a line chart where x values are set all along the axis and y value are\n", |
| 117 | + "# the corresponding values from the density function\n", |
| 118 | + "plt.plot(xs,density(xs))\n", |
| 119 | + "plt.show()" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "metadata": {}, |
| 126 | + "outputs": [], |
| 127 | + "source": [ |
| 128 | + "# from sklearn.cluster import KMeans\n", |
| 129 | + "# import numpy as np\n", |
| 130 | + "\n", |
| 131 | + "# all_cell_median_intensity = np.array(all_cell_median_intensity)\n", |
| 132 | + "\n", |
| 133 | + "# # fit the k-means model to the data\n", |
| 134 | + "# kmeans = KMeans(n_clusters=2).fit(all_cell_median_intensity.reshape(-1, 1))\n", |
| 135 | + "\n", |
| 136 | + "# # get the threshold point between the two clusters\n", |
| 137 | + "# threshold = kmeans.cluster_centers_[0] if kmeans.cluster_centers_[0] < kmeans.cluster_centers_[1] else kmeans.cluster_centers_[1]\n" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": null, |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [], |
| 145 | + "source": [ |
| 146 | + "print(len(density(xs)))\n", |
| 147 | + "print(len(all_cell_median_intensity))" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": null, |
| 153 | + "metadata": {}, |
| 154 | + "outputs": [], |
| 155 | + "source": [ |
| 156 | + "from sklearn.mixture import GaussianMixture\n", |
| 157 | + "\n", |
| 158 | + "# Fit the GMM\n", |
| 159 | + "\n", |
| 160 | + "gmm = GaussianMixture(n_components=2).fit(np.array(all_cell_median_intensity).reshape(-1, 1))\n", |
| 161 | + "\n", |
| 162 | + "# Find the x values of the two peaks\n", |
| 163 | + "peaks_x = gmm.means_.flatten()\n", |
| 164 | + "\n", |
| 165 | + "print('The x values of the two peaks are:', peaks_x)" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": null, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "from scipy.stats import norm\n", |
| 175 | + "\n", |
| 176 | + "sorted_peaks = np.sort(peaks_x)\n", |
| 177 | + "# Find the minimum point between the two peaks\n", |
| 178 | + "min_index = np.argmin(density(xs)[(xs > sorted_peaks[0]) & (xs < sorted_peaks[1])])\n", |
| 179 | + "threshold = sorted_peaks[0]+xs[min_index]\n", |
| 180 | + "print(threshold)\n", |
| 181 | + "# Plot the data\n", |
| 182 | + "plt.plot(xs, density(xs), label='Density')\n", |
| 183 | + "plt.axvline(threshold, color='r', label='Threshold')\n", |
| 184 | + "plt.legend()\n", |
| 185 | + "plt.show()" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": null, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
| 193 | + "source": [ |
| 194 | + "df_cellpose[\"cell_intensity\"] = all_cell_median_intensity\n", |
| 195 | + "df_cellpose[\"muscle_cell_type\"] = df_cellpose[\"cell_intensity\"].apply(\n", |
| 196 | + " lambda x: 1 if x < threshold else 2\n", |
| 197 | + ")\n", |
| 198 | + "df_cellpose.head()" |
| 199 | + ] |
| 200 | + }, |
| 201 | + { |
| 202 | + "cell_type": "code", |
| 203 | + "execution_count": null, |
| 204 | + "metadata": {}, |
| 205 | + "outputs": [], |
| 206 | + "source": [ |
| 207 | + "df_cellpose[\"muscle_cell_type\"].value_counts(normalize=True)" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": null, |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [], |
| 215 | + "source": [ |
| 216 | + "label_map = np.zeros(\n", |
| 217 | + " (image_array.shape[0], image_array.shape[1]), dtype=np.uint16\n", |
| 218 | + ")\n", |
| 219 | + "# for index in track(range(len(df_cellpose)), description=\"Painting cells\"):\n", |
| 220 | + "for index in range(len(df_cellpose)):\n", |
| 221 | + " single_cell_mask = df_cellpose.iloc[index, 9].copy()\n", |
| 222 | + " if df_cellpose[\"muscle_cell_type\"][index] == 2:\n", |
| 223 | + " label_map[\n", |
| 224 | + " df_cellpose.iloc[index, 5] : df_cellpose.iloc[index, 7],\n", |
| 225 | + " df_cellpose.iloc[index, 6] : df_cellpose.iloc[index, 8],\n", |
| 226 | + " ][single_cell_mask] = 1\n", |
| 227 | + " elif df_cellpose[\"muscle_cell_type\"][index] == 1:\n", |
| 228 | + " label_map[\n", |
| 229 | + " df_cellpose.iloc[index, 5] : df_cellpose.iloc[index, 7],\n", |
| 230 | + " df_cellpose.iloc[index, 6] : df_cellpose.iloc[index, 8],\n", |
| 231 | + " ][single_cell_mask] = 2" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "code", |
| 236 | + "execution_count": null, |
| 237 | + "metadata": {}, |
| 238 | + "outputs": [], |
| 239 | + "source": [ |
| 240 | + "%config InlineBackend.figure_format = 'retina'\n", |
| 241 | + "from myoquant.src.common_func import label2rgb, blend_image_with_label\n", |
| 242 | + "labelRGB_map = label2rgb(image_array, label_map)\n", |
| 243 | + "overlay_img = blend_image_with_label(image_array, labelRGB_map)\n", |
| 244 | + "\n", |
| 245 | + "plt.figure(figsize=(10,20))\n", |
| 246 | + "\n", |
| 247 | + "f, axarr = plt.subplots(1,2) \n", |
| 248 | + "axarr[0].imshow(image_array)\n", |
| 249 | + "axarr[1].imshow(overlay_img)\n", |
| 250 | + "plt.tight_layout()\n", |
| 251 | + "plt.show()" |
| 252 | + ] |
| 253 | + } |
| 254 | + ], |
| 255 | + "metadata": { |
| 256 | + "kernelspec": { |
| 257 | + "display_name": ".venv", |
| 258 | + "language": "python", |
| 259 | + "name": "python3" |
| 260 | + }, |
| 261 | + "language_info": { |
| 262 | + "codemirror_mode": { |
| 263 | + "name": "ipython", |
| 264 | + "version": 3 |
| 265 | + }, |
| 266 | + "file_extension": ".py", |
| 267 | + "mimetype": "text/x-python", |
| 268 | + "name": "python", |
| 269 | + "nbconvert_exporter": "python", |
| 270 | + "pygments_lexer": "ipython3", |
| 271 | + "version": "3.8.16" |
| 272 | + }, |
| 273 | + "orig_nbformat": 4, |
| 274 | + "vscode": { |
| 275 | + "interpreter": { |
| 276 | + "hash": "da16f84656d11a3c096dd3524a83da95908ee8e4fba887e4173f286cf5f829c6" |
| 277 | + } |
| 278 | + } |
| 279 | + }, |
| 280 | + "nbformat": 4, |
| 281 | + "nbformat_minor": 2 |
| 282 | +} |
0 commit comments