-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_dan.py
266 lines (233 loc) · 13.1 KB
/
evaluate_dan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from cmath import log
import torch
import argparse
import numpy as np
import sklearn.covariance
import torch.nn.functional as F
from metrics import get_metrics
from loguru import logger
from torch.nn import CosineSimilarity
# inter-layer pooling
def pooling_features(features, pooling='last', fusion_module=None): # layers, num_samples, hidden_size
num_layers = features.shape[0]
if pooling == 'last':
return features[-1,:,:]
elif pooling == 'avg':
return np.mean(features[1:], axis=0)
elif pooling == 'avg_emb': # including token embeddings
return np.mean(features, axis=0)
elif pooling == 'emb':
return features[0]
elif pooling == 'first_last':
return (features[-1] + features[1])/2.0
elif pooling == 'odd':
odd_layers= [1 + i for i in range(0, num_layers-1,2)]
return (np.sum(features[odd_layers],axis=0))/(num_layers/2)
elif pooling == 'even':
even_layers= [2 + i for i in range(0, num_layers-1,2)]
return (np.sum(features[even_layers],axis=0))/(num_layers/2)
elif pooling == 'last2':
return (features[-1] + features[-2])/2.0
elif pooling == 'concat':
features = np.transpose(features, (1,0,2)) # num_samples, layers, hidden_size
return features.reshape(features.shape[0],-1) # num_samples, layers*hidden_size
elif type(pooling) == int or (type(pooling) == str and pooling.isdigit()):
pooling = int(pooling)
return features[pooling]
elif ',' in pooling or type(pooling) == list:
layers = pooling
if type(pooling) == str:
layers = list([int(l) for l in pooling.split(',')])
return np.mean(features[layers], axis=0)
else:
raise NotImplementedError
def sample_estimator(features, labels):
labels = labels.reshape(-1)
num_classes = np.unique(labels).shape[0]
print(num_classes)
#group_lasso = EmpiricalCovariance(assume_centered=False)
#group_lasso = MinCovDet(assume_centered=False, random_state=42, support_fraction=1.0)
group_lasso = sklearn.covariance.ShrunkCovariance()
sample_class_mean = []
#class_covs = []
for c in range(num_classes):
current_class_mean = np.mean(features[labels==c,:], axis=0)
sample_class_mean.append(current_class_mean)
#cov_now = np.cov((features[labels == c]-(current_class_mean.reshape([1,-1]))).T)
#class_covs.append(cov_now)
#precision = np.linalg.inv(np.mean(np.stack(class_covs,axis=0),axis=0))
#print(precision.shape)
#
X = [features[labels==c,:] - sample_class_mean[c] for c in range(num_classes)]
X = np.concatenate(X, axis=0)
group_lasso.fit(X)
precision = group_lasso.precision_
return sample_class_mean, precision
def get_distance_score(class_mean, precision, features, measure='maha'):
num_classes = len(class_mean)
num_samples = len(features)
class_mean = [torch.from_numpy(m).float() for m in class_mean]
precision = torch.from_numpy(precision).float()
features = torch.from_numpy(features).float()
scores = []
for c in range(num_classes):
centered_features = features.data - class_mean[c]
if measure == 'maha':
score = -1.0*torch.mm(torch.mm(centered_features, precision), centered_features.t()).diag()
elif measure == 'euclid':
score = -1.0*torch.mm(centered_features, centered_features.t()).diag()
elif measure == 'cosine':
score = torch.tensor([CosineSimilarity()(features[i].reshape(1,-1), class_mean[c].reshape(1,-1)) for i in range(num_samples)])
scores.append(score.reshape(-1,1))
scores = torch.cat(scores, dim=1) # num_samples, num_classes
print(scores.shape)
scores,_ = torch.max(scores, dim=1) # num_samples
#scores = scores[:,1]
scores = scores.cpu().numpy()
return scores
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0',
type=str, required=False, help='GPU ids')
parser.add_argument('--dataset', default='sst-2', help='training dataset')
parser.add_argument('--ood_method', default='base', type=str)
parser.add_argument('--ood_datasets', default='20news,wmt16,multi30k,rte,snli',
type=str, required=False)
parser.add_argument('--batch_size', default=512, type=int,
required=False, help='batch size')
parser.add_argument('--distance_metric', type=str, default='maha',
help='distance metric')
parser.add_argument('--token_pooling', type=str, default='avg',
help='token pooling way', choices = ['cls','avg', 'max'])
parser.add_argument('--layer_pooling', type=str, default='last')
parser.add_argument('--output_image', type=str, default=None)
parser.add_argument('--input_dir', default='./log/embeddings/roberta-base/sst-2/seed13',
type=str, required=False, help='save directory')
parser.add_argument('--log_file', type=str, default='./log/inter_results.log')
parser.add_argument('--score_ensemble', action='store_true')
parser.add_argument('--std', action='store_true')
parser.add_argument('--agg', type=str, default='mean', choices=['mean','min'])
parser.add_argument('--layer_analysis', action='store_true')
parser.add_argument('--model_path', default='./log/embeddings/roberta-base/sst-2/seed13/avg_lstm_model.pt')
parser.add_argument('--valid_size', type=int, default=-1)
args = parser.parse_args()
log_file_name = args.log_file
logger.add(log_file_name)
logger.info('args:\n' + args.__repr__())
input_dir = args.input_dir
token_pooling = args.token_pooling
layer_pooling = args.layer_pooling
logger.info(input_dir)
logger.info(token_pooling)
logger.info(layer_pooling)
if args.layer_analysis:
ood_full_features_list = []
for ood_dataset in args.ood_datasets.split(','):
ood_features = np.load('{}/{}_ood_features_{}.npy'.format(input_dir, token_pooling, ood_dataset))
ood_full_features_list.append(ood_features)
ind_test_full_features = np.load('{}/{}_ind_test_features.npy'.format(input_dir, token_pooling))
ind_train_full_features = np.load('{}/{}_ind_train_features.npy'.format(input_dir, token_pooling))
ind_train_labels = np.load('{}/{}_ind_train_labels.npy'.format(input_dir, token_pooling))
num_layers = ind_train_full_features.shape[0]-1
best_aurocs = []
best_combination = None
for i in range(1, num_layers+1):
best_auroc = 0
# Search for the best combination
from itertools import combinations
for choice in combinations([j for j in range(1, num_layers+1)], i):
ind_train_features = pooling_features(ind_train_full_features, list(choice))
sample_class_mean, precision = sample_estimator(ind_train_features, ind_train_labels)
ind_test_features = pooling_features(ind_test_full_features, list(choice))
ind_scores = get_distance_score(sample_class_mean, precision,\
ind_test_features, measure=args.distance_metric)
aurocs = []
for ood_full_features in ood_full_features_list:
ood_test_features = pooling_features(ood_full_features, list(choice))
ood_scores = get_distance_score(sample_class_mean, precision, ood_test_features, measure=args.distance_metric)
auroc = get_metrics(ind_scores, ood_scores)['AUROC']
aurocs.append(auroc)
mean_auroc = sum(aurocs)/len(aurocs)
if best_auroc < mean_auroc:
best_auroc = mean_auroc
if len(best_aurocs) == 0 or best_auroc > max(best_aurocs):
best_combination = list(choice)
#best_auroc = max(best_auroc, np.mean(aurocs))
best_aurocs.append(best_auroc)
print(best_aurocs)
print(best_combination)
return
if args.score_ensemble:
ind_dev_features = np.load('{}/{}_ind_dev_features.npy'.format(input_dir, token_pooling))
ind_dev_labels = np.load('{}/ind_dev_labels.npy'.format(input_dir))
num_layers = ind_dev_features.shape[0] - 1
indices = np.arange(ind_dev_features.shape[1])
np.random.seed(42)
np.random.shuffle(indices)
valid_size = int(0.2*ind_dev_features.shape[1])
ind_dev_features_train, ind_dev_features_valid = ind_dev_features[:,indices[:-valid_size]], ind_dev_features[:,indices[-valid_size:]]
ind_dev_labels_train, ind_dev_labels_valid = ind_dev_labels[indices[:-valid_size]], ind_dev_labels[indices[-valid_size:]]
clean_test_features = np.load('{}/{}_ind_test_clean_features.npy'.format(input_dir, token_pooling))
poison_test_features = np.load('{}/{}_ind_test_poison_features.npy'.format(input_dir, token_pooling))
clean_scores_list = []
poison_scores_list = []
valid_scores_list = []
for layer in range(1, num_layers+1):
print("layer {}".format(layer))
ind_train_features = ind_dev_features_train[layer]
sample_class_mean, precision = sample_estimator(ind_train_features, ind_dev_labels_train)
valid_scores = -1*get_distance_score(sample_class_mean, precision, ind_dev_features_valid[layer], measure=args.distance_metric)
clean_scores = -1*get_distance_score(sample_class_mean, precision, clean_test_features[layer], measure=args.distance_metric)
poison_scores = -1*get_distance_score(sample_class_mean, precision, poison_test_features[layer], measure=args.distance_metric)
if args.std:
mean = np.mean(valid_scores)
std = np.std(valid_scores)
valid_scores = (valid_scores - mean)/std
clean_scores = (clean_scores - mean)/std
poison_scores = (poison_scores - mean)/std
clean_scores_list.append(-1*clean_scores)
poison_scores_list.append(-1*poison_scores)
valid_scores_list.append(-1*valid_scores)
if args.agg == 'mean':
clean_scores = np.mean(clean_scores_list, axis=0)
valid_scores = np.mean(valid_scores_list, axis=0)
poison_scores = np.mean(poison_scores_list, axis=0)
elif args.agg == 'min':
clean_scores = np.min(clean_scores_list, axis=0)
valid_scores = np.min(valid_scores_list, axis=0)
poison_scores = np.min(poison_scores_list, axis=0)
metrics = get_metrics(clean_scores, poison_scores, valid_scores)
logger.info('AUROC :{:.2f}%'.format(metrics['AUROC']*100))
for FRR in [0.5,1,3,5,10]:
logger.info('valid FRR={}, FRR :{:.2f}%, FAR :{:.2f}%'.format(FRR, metrics["FRR_backdoor_FRR_{}".format(FRR)]*100, metrics["FAR_backdoor_FRR_{}".format(FRR)]*100))
return
ind_dev_features = np.load('{}/{}_ind_dev_features.npy'.format(input_dir, token_pooling))
#ind_train_features = torch.load('{}/{}_ind_train_features.pt'.format(input_dir, token_pooling))
ind_dev_labels = np.load('{}/ind_dev_labels.npy'.format(input_dir))
ind_dev_features = pooling_features(ind_dev_features, layer_pooling)
if args.valid_size != -1:
indices = np.arange(len(ind_dev_features))
np.random.seed(42)
np.random.shuffle(indices)
ind_dev_features = ind_dev_features[indices[:args.valid_size]]
ind_dev_labels = ind_dev_labels[indices[:args.valid_size]]
indices = np.arange(len(ind_dev_features))
np.random.seed(42)
np.random.shuffle(indices)
valid_size = int(0.2*len(ind_dev_features))
ind_dev_features_train, ind_dev_features_valid = ind_dev_features[indices[:-valid_size]], ind_dev_features[indices[-valid_size:]]
ind_dev_labels_train, ind_dev_labels_valid = ind_dev_labels[indices[:-valid_size]], ind_dev_labels[indices[-valid_size:]]
sample_class_mean, precision = sample_estimator(ind_dev_features_train, ind_dev_labels_train)
clean_test_features = np.load('{}/{}_ind_test_clean_features.npy'.format(input_dir, token_pooling))
clean_test_features = pooling_features(clean_test_features, layer_pooling)
clean_scores = get_distance_score(sample_class_mean, precision, clean_test_features, args.distance_metric)
poison_test_features = np.load('{}/{}_ind_test_poison_features.npy'.format(input_dir, token_pooling))
poison_test_features = pooling_features(poison_test_features, layer_pooling)
poison_scores = get_distance_score(sample_class_mean, precision, poison_test_features, args.distance_metric)
valid_scores = get_distance_score(sample_class_mean, precision, ind_dev_features_valid, args.distance_metric)
metrics = get_metrics(clean_scores, poison_scores, valid_scores)
logger.info('AUROC :{:.2f}%'.format(metrics['AUROC']*100))
for FRR in [0.5,1,3,5,10]:
logger.info('valid FRR={}, FRR :{:.2f}%, FAR :{:.2f}%'.format(FRR, metrics["FRR_backdoor_FRR_{}".format(FRR)]*100, metrics["FAR_backdoor_FRR_{}".format(FRR)]*100))
if __name__ == '__main__':
main()