-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
42 lines (30 loc) · 1.21 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from math import log
log2 = lambda x: log(x) / log(2)
def calculate_gain(both, yesses, nos):
entropy = variance if is_numeric(both) else boltzmann_entropy
return entropy(both) \
- len(yesses)/len(both) * entropy(yesses) \
- len(nos)/len(both) * entropy(nos)
def is_numeric(examples):
return examples[0]['conclusion'].__class__.__name__ in ['int', 'float']
def variance(examples):
mean = sum([example['conclusion'] for example in examples])
return sum([(example['conclusion'] - mean) ** 2 for example in examples])
def boltzmann_entropy(examples):
probabilities = probability_distribution(examples)
total_entropy = 0.0
for key, probability in probabilities.iteritems():
total_entropy -= probability * log2(probability)
return total_entropy
def probability_distribution(examples):
counts = histogram(examples)
total = sum(counts.values())
return {key: float(value)/total for key, value in counts.iteritems()}
def histogram(examples):
counts = {}
for example in examples:
if example['conclusion'] not in counts:
counts[example['conclusion']] = 1
else:
counts[example['conclusion']] += 1
return counts