-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabel.py
100 lines (78 loc) · 3.15 KB
/
label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import json
import pandas as pd
import random
from datetime import datetime
import os
# Samples tweets from Tweets.json based on their rank value and converts them to a csv file for annotation in Lighttag
def split_convert():
jsonfile = open('Data/Tweets.json', 'r')
values = json.load(jsonfile)
jsonfile.close()
not_labeled = []
tweets = len(values['data'])
for i in range(0, tweets):
if values['data'][i]['label'] == "?" and values['data'][i]['rank'] > 0:
not_labeled.append(i)
samples = random.choices(not_labeled, k=min(50, len(not_labeled)))
data = []
for tweet in range(0, len(samples)):
data.append({'id': str(values['data'][samples[tweet]]['id']),
'text': values['data'][samples[tweet]]['text'],
'label': "?"})
df = pd.DataFrame(data)
filename = "LabeledData/"+datetime.now().strftime("%d-%m-%H-%M")+".csv"
df.to_csv(filename)
print(f"{filename} generated.")
# Reset all labels in Tweets.json back to '?'
def reset_labels():
jsonfile = open('Data/Tweets.json', 'r')
values = json.load(jsonfile)
jsonfile.close()
tweets = len(values['data'])
for i in range(0, tweets):
values['data'][i]['label'] = "?"
f = open("Data/Tweets.json", 'w')
f.write(json.dumps(values, indent=0, sort_keys=True))
f.close()
# Print how many tweets of every label are currently in Tweets.json
def count_labels():
jsonfile = open('Data/Tweets.json', 'r')
values = json.load(jsonfile)
jsonfile.close()
tweets = len(values['data'])
pos, neg, neu = 0, 0, 0
for i in range(tweets):
label = values['data'][i]['label']
if label == "Positive":
pos += 1
elif label == "Negative":
neg += 1
elif label == "Neutral":
neu += 1
print(f"Positive: {pos}\nNeutral: {neu} \nNegative: {neg} \n")
# Extract labels from lighttag files in 'LabeledData' folder and insert them into Tweets.json
def insert_labels():
jsonfile = open('Data/Tweets.json', 'r')
tweets = json.load(jsonfile)
jsonfile.close()
n_tweets = len(tweets['data'])
directory = "LabeledData"
for filename in os.listdir(directory):
f = os.path.join(directory, filename)
if os.path.isfile(f) and filename.endswith('.json'):
jsonfile = open(f, 'r', encoding="utf8")
annotations = json.load(jsonfile)
jsonfile.close()
n_labels = len(annotations['examples'])
# Match tweets by tweet id and set label
for annotation in range(n_labels):
tweet_id = annotations['examples'][annotation]['metadata']['id']
label = annotations['examples'][annotation]['classifications'][0]['classname']
for tweet in range(n_tweets):
if tweets['data'][tweet]['id'] == tweet_id:
if tweets['data'][tweet]['label'] == "?":
tweets['data'][tweet]['label'] = label
f = open("Data/Tweets.json", 'w')
f.write(json.dumps(tweets, indent=0, sort_keys=True))
f.close()
print("Labels inserted into Tweets.json")