-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgliomas.py
294 lines (230 loc) · 9.52 KB
/
gliomas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# -*- coding: utf-8 -*-
"""Gliomas.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1urqNeoAGS4Gz-EGULpcFlTOyNUXFjgzA
"""
import pandas as pd
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score
from sklearn.model_selection import learning_curve
from sklearn.model_selection import GridSearchCV
from xgboost import XGBClassifier
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# Load the data
file_path = '/content/TCGA_GBM_LGG_Mutations_all.csv'
df = pd.read_csv(file_path)
# Columns to be encoded
columns_to_encode = ['Grade', 'Project', 'Case_ID', 'Gender',
'Primary_Diagnosis', 'Race', 'IDH1', 'TP53', 'ATRX', 'PTEN', 'EGFR',
'CIC', 'MUC16', 'PIK3CA', 'NF1', 'PIK3R1', 'FUBP1', 'RB1', 'NOTCH1',
'BCOR', 'CSMD3', 'SMARCA4', 'GRIN2A', 'IDH2', 'FAT4', 'PDGFRA']
# Initialize LabelEncoder
label_encoder = LabelEncoder()
# Create a DataFrame to store encoded data
encoded_df = pd.DataFrame()
# Encode categorical columns and store them in encoded_df
for col in columns_to_encode:
encoded_df[col + '_encoded'] = label_encoder.fit_transform(df[col])
# Handle 'Age_at_diagnosis' separately
df['Age_at_diagnosis'].fillna('-1 years', inplace=True)
df['Age_at_diagnosis'] = df['Age_at_diagnosis'].astype(str).str.extract(r'(\d+)').fillna(-1).astype(int)
# Add the processed 'Age_at_diagnosis' to encoded_df
encoded_df['Age_at_diagnosis'] = df['Age_at_diagnosis']
# Drop rows with NaN or missing values in encoded_df
encoded_df.dropna(inplace=True)
# Display the DataFrame with the extracted age values
print("DataFrame with Extracted Age Values:")
print(encoded_df)
print(encoded_df.columns)
# List class names for Gender
gender_classes = label_encoder.fit(df['Gender']).classes_
print("Class names for Gender:", gender_classes)
# Drop rows where Gender is '--' in encoded_df
gender_encoded_class_index = list(gender_classes).index('--')
encoded_df = encoded_df[encoded_df['Gender_encoded'] != gender_encoded_class_index]
# List class names for Gender
gender_classes = label_encoder.fit(encoded_df['Gender_encoded']).classes_
print("Class names for Gender:", gender_classes)
# Features (all columns except 'Grade_encoded')
features = encoded_df.drop(columns=['Grade_encoded'])
# Label ('Grade_encoded')
label = encoded_df['Grade_encoded']
# Plot bar plots for features
for col in features.columns:
plt.figure(figsize=(8, 6))
sns.countplot(x=col, data=features)
plt.title(f'Bar Plot for {col}')
plt.xlabel(col)
plt.ylabel('Count')
plt.tight_layout()
plt.show()
# Plot bar plot for the label
plt.figure(figsize=(8, 6))
sns.countplot(x=label)
plt.title('Bar Plot for Label (Grade_encoded)')
plt.xlabel('Grade_encoded')
plt.ylabel('Count')
plt.tight_layout()
plt.show()
# Compute the correlation matrix
correlation_matrix = encoded_df.corr()
# Print the correlation matrix
print("\nCorrelation Matrix:")
print(correlation_matrix)
# Print the numerical values in the correlation matrix greater than 0.80
print("\nCorrelation Values Greater Than 0.80 (excluding diagonal elements):")
for i in range(len(correlation_matrix)):
for j in range(len(correlation_matrix.columns)):
if i != j: # Exclude diagonal elements
correlation_value = correlation_matrix.iloc[i, j]
if correlation_value > 0.80:
print(f"Correlation between {correlation_matrix.index[i]} and {correlation_matrix.columns[j]}: {correlation_value}")
# Plot the heatmap
plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, cmap='coolwarm', annot=False, fmt=".2f")
plt.title('Correlation Heatmap of Encoded DataFrame')
plt.show()
print(encoded_df.columns)
# Drop 'Case_ID_encoded' and 'Project_encoded' from encoded_df
encoded_df.drop(columns=['Case_ID_encoded', 'Project_encoded', 'Primary_Diagnosis_encoded'], inplace=True)
print(encoded_df.columns)
# Select features (all columns except 'Grade_encoded')
features = encoded_df.drop(columns=['Grade_encoded'])
# Select label ('Grade_encoded')
label = encoded_df['Grade_encoded']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(features, label, test_size=0.3, random_state=42)
# Normalize the features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Train an SVM model
svm_model = SVC(kernel='linear')
svm_model.fit(X_train, y_train)
# Predict on the test set
y_pred = svm_model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"SVM Accuracy: {accuracy:.2f}")
print("\nSVM Classification Report:")
print(classification_report(y_test, y_pred))
# Train a Random Forest model
rf_model = RandomForestClassifier(n_estimators=50, random_state=42)
rf_model.fit(X_train, y_train)
# Predict on the test set
y_pred_rf = rf_model.predict(X_test)
# Evaluate the Random Forest model
accuracy_rf = accuracy_score(y_test, y_pred_rf)
print(f"Random Forest Accuracy: {accuracy_rf:.2f}")
print("\nRandom Forest Classification Report:")
print(classification_report(y_test, y_pred_rf))
# Plot feature importance
plt.figure(figsize=(10, 8))
sns.barplot(x=rf_model.feature_importances_, y=features.columns)
plt.title('Feature Importance - Random Forest')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.show()
def plot_learning_curves(estimator, X, y, title='Learning Curves'):
train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=5, n_jobs=-1,
train_sizes=np.linspace(0.1, 1.0, 10), scoring='accuracy')
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.figure(figsize=(12, 6))
plt.title(title)
plt.xlabel("Training examples")
plt.ylabel("Score")
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1,
color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score")
plt.legend(loc="best")
return plt
# Plot learning curves for the Random Forest model
plot_learning_curves(rf_model, X_train, y_train, title='Random Forest Learning Curves')
plt.show()
# Define the parameter grid
param_grid = {
'n_estimators': [50, 100, 150],
'max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4],
'max_features': ['auto', 'sqrt', 'log2']
}
# Initialize a RandomForestClassifier
rf = RandomForestClassifier(random_state=42)
# Initialize the GridSearchCV object
grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=5, scoring='accuracy', verbose=2, n_jobs=-1)
# Fit the grid search to the data
grid_search.fit(X_train, y_train)
# Best parameters and best score
print("Best parameters found: ", grid_search.best_params_)
print("Best accuracy found: ", grid_search.best_score_)
# Retrieve the best model
best_rf_model = grid_search.best_estimator_
# Predict on the test set using the best model
y_pred_rf = best_rf_model.predict(X_test)
# Evaluate the Random Forest model
accuracy_rf = accuracy_score(y_test, y_pred_rf)
print(f"Optimized Random Forest Accuracy: {accuracy_rf:.2f}")
print("\nOptimized Random Forest Classification Report:")
print(classification_report(y_test, y_pred_rf))
# Train an XGBoost model
xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
xgb_model.fit(X_train, y_train)
# Predict on the test set
y_pred = xgb_model.predict(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"XGBOOST Accuracy: {accuracy:.2f}")
print("\nXGBOOST Classification Report:")
print(classification_report(y_test, y_pred))
# Cross-validation
cross_val_scores = cross_val_score(xgb_model, X_train, y_train, cv=5)
print(f"Cross-validation scores: {cross_val_scores}")
print(f"Mean cross-validation score: {cross_val_scores.mean():.2f}")
# Plot feature importance
plt.figure(figsize=(10, 8))
sns.barplot(x=xgb_model.feature_importances_, y=features.columns)
plt.title('Feature Importance')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.show()
# Adjusting model parameters
xgb_model = XGBClassifier(
use_label_encoder=False,
eval_metric='logloss',
max_depth=6,
colsample_bytree=0.8,
gamma=0.1,
min_child_weight=1
)
xgb_model.fit(X_train, y_train)
# Evaluating the model
y_pred = xgb_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Adjusted XGBOOST Accuracy: {accuracy:.2f}")
print("\nAdjusted XGBOOST Classification Report:")
print(classification_report(y_test, y_pred))
# Cross-validation to check stability
cross_val_scores = cross_val_score(xgb_model, X_train, y_train, cv=5)
print(f"Adjusted Cross-validation scores: {cross_val_scores}")
print(f"Mean Adjusted cross-validation score: {cross_val_scores.mean():.2f}")
# Feature importance
plt.figure(figsize=(10, 8))
sns.barplot(x=xgb_model.feature_importances_, y=features.columns)
plt.title('Adjusted Feature Importance')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.show()