|
| 1 | +# https://deeplearningcourses.com/c/cutting-edge-artificial-intelligence |
| 2 | +import time |
| 3 | +import joblib |
| 4 | +import numpy as np |
| 5 | +import tensorflow as tf |
| 6 | +import os |
| 7 | + |
| 8 | + |
| 9 | +def set_global_seeds(i): |
| 10 | + tf.set_random_seed(i) |
| 11 | + np.random.seed(i) |
| 12 | + |
| 13 | + |
| 14 | +def cat_entropy(logits): |
| 15 | + a0 = logits - tf.reduce_max(logits, 1, keepdims=True) |
| 16 | + ea0 = tf.exp(a0) |
| 17 | + z0 = tf.reduce_sum(ea0, 1, keepdims=True) |
| 18 | + p0 = ea0 / z0 |
| 19 | + return tf.reduce_sum(p0 * (tf.log(z0) - a0), 1) |
| 20 | + |
| 21 | + |
| 22 | +def find_trainable_variables(key): |
| 23 | + with tf.variable_scope(key): |
| 24 | + return tf.trainable_variables() |
| 25 | + |
| 26 | + |
| 27 | +def discount_with_dones(rewards, dones, gamma): |
| 28 | + discounted = [] |
| 29 | + r = 0 |
| 30 | + for reward, done in zip(rewards[::-1], dones[::-1]): |
| 31 | + r = reward + gamma * r * (1. - done) # fixed off by one bug |
| 32 | + discounted.append(r) |
| 33 | + return discounted[::-1] |
| 34 | + |
| 35 | + |
| 36 | + |
| 37 | +class Agent: |
| 38 | + def __init__(self, Network, ob_space, ac_space, nenvs, nsteps, nstack, |
| 39 | + ent_coef=0.01, vf_coef=0.5, max_grad_norm=0.5, lr=7e-4, |
| 40 | + alpha=0.99, epsilon=1e-5, total_timesteps=int(80e6)): |
| 41 | + config = tf.ConfigProto(intra_op_parallelism_threads=nenvs, |
| 42 | + inter_op_parallelism_threads=nenvs) |
| 43 | + config.gpu_options.allow_growth = True |
| 44 | + sess = tf.Session(config=config) |
| 45 | + nbatch = nenvs * nsteps |
| 46 | + |
| 47 | + A = tf.placeholder(tf.int32, [nbatch]) |
| 48 | + ADV = tf.placeholder(tf.float32, [nbatch]) |
| 49 | + R = tf.placeholder(tf.float32, [nbatch]) |
| 50 | + LR = tf.placeholder(tf.float32, []) |
| 51 | + |
| 52 | + step_model = Network(sess, ob_space, ac_space, nenvs, 1, nstack, reuse=False) |
| 53 | + train_model = Network(sess, ob_space, ac_space, nenvs, nsteps, nstack, reuse=True) |
| 54 | + |
| 55 | + neglogpac = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=train_model.pi, labels=A) |
| 56 | + pg_loss = tf.reduce_mean(ADV * neglogpac) |
| 57 | + vf_loss = tf.reduce_mean(tf.squared_difference(tf.squeeze(train_model.vf), R) / 2.0) |
| 58 | + entropy = tf.reduce_mean(cat_entropy(train_model.pi)) |
| 59 | + loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef |
| 60 | + |
| 61 | + params = find_trainable_variables("model") |
| 62 | + grads = tf.gradients(loss, params) |
| 63 | + if max_grad_norm is not None: |
| 64 | + grads, grad_norm = tf.clip_by_global_norm(grads, max_grad_norm) |
| 65 | + grads_and_params = list(zip(grads, params)) |
| 66 | + trainer = tf.train.RMSPropOptimizer(learning_rate=LR, decay=alpha, epsilon=epsilon) |
| 67 | + _train = trainer.apply_gradients(grads_and_params) |
| 68 | + |
| 69 | + def train(states, rewards, actions, values): |
| 70 | + advs = rewards - values |
| 71 | + feed_dict = {train_model.X: states, A: actions, ADV: advs, R: rewards, LR: lr} |
| 72 | + policy_loss, value_loss, policy_entropy, _ = sess.run( |
| 73 | + [pg_loss, vf_loss, entropy, _train], |
| 74 | + feed_dict |
| 75 | + ) |
| 76 | + return policy_loss, value_loss, policy_entropy |
| 77 | + |
| 78 | + def save(save_path): |
| 79 | + ps = sess.run(params) |
| 80 | + joblib.dump(ps, save_path) |
| 81 | + |
| 82 | + def load(load_path): |
| 83 | + loaded_params = joblib.load(load_path) |
| 84 | + restores = [] |
| 85 | + for p, loaded_p in zip(params, loaded_params): |
| 86 | + restores.append(p.assign(loaded_p)) |
| 87 | + ps = sess.run(restores) |
| 88 | + |
| 89 | + self.train = train |
| 90 | + self.train_model = train_model |
| 91 | + self.step_model = step_model |
| 92 | + self.step = step_model.step |
| 93 | + self.value = step_model.value |
| 94 | + self.save = save |
| 95 | + self.load = load |
| 96 | + tf.global_variables_initializer().run(session=sess) |
| 97 | + |
| 98 | + |
| 99 | +class Runner: |
| 100 | + def __init__(self, env, agent, nsteps=5, nstack=4, gamma=0.99): |
| 101 | + self.env = env |
| 102 | + self.agent = agent |
| 103 | + nh, nw, nc = env.observation_space.shape |
| 104 | + nenv = env.num_envs |
| 105 | + self.batch_ob_shape = (nenv * nsteps, nh, nw, nc * nstack) |
| 106 | + self.state = np.zeros((nenv, nh, nw, nc * nstack), dtype=np.uint8) |
| 107 | + self.nc = nc |
| 108 | + obs = env.reset() |
| 109 | + self.update_state(obs) |
| 110 | + self.gamma = gamma |
| 111 | + self.nsteps = nsteps |
| 112 | + self.dones = [False for _ in range(nenv)] |
| 113 | + self.total_rewards = [] # store all workers' total rewards |
| 114 | + self.real_total_rewards = [] |
| 115 | + |
| 116 | + def update_state(self, obs): |
| 117 | + # Do frame-stacking here instead of the FrameStack wrapper to reduce IPC overhead |
| 118 | + self.state = np.roll(self.state, shift=-self.nc, axis=3) |
| 119 | + self.state[:, :, :, -self.nc:] = obs |
| 120 | + |
| 121 | + def run(self): |
| 122 | + mb_states, mb_rewards, mb_actions, mb_values, mb_dones = [], [], [], [], [] |
| 123 | + for n in range(self.nsteps): |
| 124 | + actions, values = self.agent.step(self.state) |
| 125 | + mb_states.append(np.copy(self.state)) |
| 126 | + mb_actions.append(actions) |
| 127 | + mb_values.append(values) |
| 128 | + mb_dones.append(self.dones) |
| 129 | + obs, rewards, dones, infos = self.env.step(actions) |
| 130 | + for done, info in zip(dones, infos): |
| 131 | + if done: |
| 132 | + self.total_rewards.append(info['reward']) |
| 133 | + if info['total_reward'] != -1: |
| 134 | + self.real_total_rewards.append(info['total_reward']) |
| 135 | + self.dones = dones |
| 136 | + for n, done in enumerate(dones): |
| 137 | + if done: |
| 138 | + self.state[n] = self.state[n] * 0 |
| 139 | + self.update_state(obs) |
| 140 | + mb_rewards.append(rewards) |
| 141 | + mb_dones.append(self.dones) |
| 142 | + # batch of steps to batch of rollouts |
| 143 | + mb_states = np.asarray(mb_states, dtype=np.uint8).swapaxes(1, 0).reshape(self.batch_ob_shape) |
| 144 | + mb_rewards = np.asarray(mb_rewards, dtype=np.float32).swapaxes(1, 0) |
| 145 | + mb_actions = np.asarray(mb_actions, dtype=np.int32).swapaxes(1, 0) |
| 146 | + mb_values = np.asarray(mb_values, dtype=np.float32).swapaxes(1, 0) |
| 147 | + mb_dones = np.asarray(mb_dones, dtype=np.bool).swapaxes(1, 0) |
| 148 | + mb_dones = mb_dones[:, 1:] |
| 149 | + last_values = self.agent.value(self.state).tolist() |
| 150 | + # discount/bootstrap off value fn |
| 151 | + for n, (rewards, dones, value) in enumerate(zip(mb_rewards, mb_dones, last_values)): |
| 152 | + rewards = rewards.tolist() |
| 153 | + dones = dones.tolist() |
| 154 | + if dones[-1] == 0: |
| 155 | + rewards = discount_with_dones(rewards + [value], dones + [0], self.gamma)[:-1] |
| 156 | + else: |
| 157 | + rewards = discount_with_dones(rewards, dones, self.gamma) |
| 158 | + mb_rewards[n] = rewards |
| 159 | + mb_rewards = mb_rewards.flatten() |
| 160 | + mb_actions = mb_actions.flatten() |
| 161 | + mb_values = mb_values.flatten() |
| 162 | + return mb_states, mb_rewards, mb_actions, mb_values |
| 163 | + |
| 164 | + |
| 165 | +def learn(network, env, seed, new_session=True, nsteps=5, nstack=4, total_timesteps=int(80e6), |
| 166 | + vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, |
| 167 | + epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=1000): |
| 168 | + tf.reset_default_graph() |
| 169 | + set_global_seeds(seed) |
| 170 | + |
| 171 | + nenvs = env.num_envs |
| 172 | + env_id = env.env_id |
| 173 | + save_name = os.path.join('models', env_id + '.save') |
| 174 | + ob_space = env.observation_space |
| 175 | + ac_space = env.action_space |
| 176 | + agent = Agent(Network=network, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, |
| 177 | + nsteps=nsteps, nstack=nstack, |
| 178 | + ent_coef=ent_coef, vf_coef=vf_coef, |
| 179 | + max_grad_norm=max_grad_norm, |
| 180 | + lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps) |
| 181 | + if os.path.exists(save_name): |
| 182 | + agent.load(save_name) |
| 183 | + |
| 184 | + runner = Runner(env, agent, nsteps=nsteps, nstack=nstack, gamma=gamma) |
| 185 | + |
| 186 | + nbatch = nenvs * nsteps |
| 187 | + tstart = time.time() |
| 188 | + for update in range(1, total_timesteps // nbatch + 1): |
| 189 | + states, rewards, actions, values = runner.run() |
| 190 | + policy_loss, value_loss, policy_entropy = agent.train( |
| 191 | + states, rewards, actions, values) |
| 192 | + nseconds = time.time() - tstart |
| 193 | + fps = int((update * nbatch) / nseconds) |
| 194 | + if update % log_interval == 0 or update == 1: |
| 195 | + print(' - - - - - - - ') |
| 196 | + print("nupdates", update) |
| 197 | + print("total_timesteps", update * nbatch) |
| 198 | + print("fps", fps) |
| 199 | + print("policy_entropy", float(policy_entropy)) |
| 200 | + print("value_loss", float(value_loss)) |
| 201 | + |
| 202 | + # total reward |
| 203 | + r = runner.total_rewards[-100:] # get last 100 |
| 204 | + tr = runner.real_total_rewards[-100:] |
| 205 | + if len(r) == 100: |
| 206 | + print("avg reward (last 100):", np.mean(r)) |
| 207 | + if len(tr) == 100: |
| 208 | + print("avg total reward (last 100):", np.mean(tr)) |
| 209 | + print("max (last 100):", np.max(tr)) |
| 210 | + |
| 211 | + agent.save(save_name) |
| 212 | + |
| 213 | + env.close() |
| 214 | + agent.save(save_name) |
0 commit comments