|
| 1 | +# https://deeplearningcourses.com/c/artificial-intelligence-reinforcement-learning-in-python |
| 2 | +# https://www.udemy.com/artificial-intelligence-reinforcement-learning-in-python |
| 3 | +from __future__ import print_function, division |
| 4 | +from builtins import range |
| 5 | +# Note: you may need to update your version of future |
| 6 | +# sudo pip install -U future |
| 7 | + |
| 8 | +import gym |
| 9 | +import numpy as np |
| 10 | +import matplotlib.pyplot as plt |
| 11 | +from sklearn.kernel_approximation import RBFSampler |
| 12 | + |
| 13 | + |
| 14 | +GAMMA = 0.99 |
| 15 | +ALPHA = 0.1 |
| 16 | + |
| 17 | + |
| 18 | +def epsilon_greedy(model, s, eps=0.1): |
| 19 | + # we'll use epsilon-soft to ensure all states are visited |
| 20 | + # what happens if you don't do this? i.e. eps=0 |
| 21 | + p = np.random.random() |
| 22 | + if p < (1 - eps): |
| 23 | + values = model.predict_all_actions(s) |
| 24 | + return np.argmax(values) |
| 25 | + else: |
| 26 | + return model.env.action_space.sample() |
| 27 | + |
| 28 | + |
| 29 | +def gather_samples(env, n_episodes=10000): |
| 30 | + samples = [] |
| 31 | + for _ in range(n_episodes): |
| 32 | + s = env.reset() |
| 33 | + done = False |
| 34 | + while not done: |
| 35 | + a = env.action_space.sample() |
| 36 | + sa = np.concatenate((s, [a])) |
| 37 | + samples.append(sa) |
| 38 | + |
| 39 | + s, r, done, info = env.step(a) |
| 40 | + return samples |
| 41 | + |
| 42 | + |
| 43 | +class Model: |
| 44 | + def __init__(self, env): |
| 45 | + # fit the featurizer to data |
| 46 | + self.env = env |
| 47 | + samples = gather_samples(env) |
| 48 | + self.featurizer = RBFSampler() |
| 49 | + self.featurizer.fit(samples) |
| 50 | + dims = self.featurizer.n_components |
| 51 | + |
| 52 | + # initialize linear model weights |
| 53 | + self.w = np.zeros(dims) |
| 54 | + |
| 55 | + def predict(self, s, a): |
| 56 | + sa = np.concatenate((s, [a])) |
| 57 | + x = self.featurizer.transform([sa])[0] |
| 58 | + return x @ self.w |
| 59 | + |
| 60 | + def predict_all_actions(self, s): |
| 61 | + return [self.predict(s, a) for a in range(self.env.action_space.n)] |
| 62 | + |
| 63 | + def grad(self, s, a): |
| 64 | + sa = np.concatenate((s, [a])) |
| 65 | + x = self.featurizer.transform([sa])[0] |
| 66 | + return x |
| 67 | + |
| 68 | + |
| 69 | +def test_agent(model, env, n_episodes=20): |
| 70 | + reward_per_episode = np.zeros(n_episodes) |
| 71 | + for it in range(n_episodes): |
| 72 | + done = False |
| 73 | + episode_reward = 0 |
| 74 | + s = env.reset() |
| 75 | + while not done: |
| 76 | + a = epsilon_greedy(model, s, eps=0) |
| 77 | + s, r, done, info = env.step(a) |
| 78 | + episode_reward += r |
| 79 | + reward_per_episode[it] = episode_reward |
| 80 | + return np.mean(reward_per_episode) |
| 81 | + |
| 82 | + |
| 83 | +def watch_agent(model, env, eps): |
| 84 | + done = False |
| 85 | + episode_reward = 0 |
| 86 | + s = env.reset() |
| 87 | + while not done: |
| 88 | + a = epsilon_greedy(model, s, eps=eps) |
| 89 | + s, r, done, info = env.step(a) |
| 90 | + env.render() |
| 91 | + episode_reward += r |
| 92 | + print("Episode reward:", episode_reward) |
| 93 | + |
| 94 | + |
| 95 | +if __name__ == '__main__': |
| 96 | + # instantiate environment |
| 97 | + env = gym.make("CartPole-v0") |
| 98 | + |
| 99 | + model = Model(env) |
| 100 | + reward_per_episode = [] |
| 101 | + |
| 102 | + # watch untrained agent |
| 103 | + watch_agent(model, env, eps=0) |
| 104 | + |
| 105 | + # repeat until convergence |
| 106 | + n_episodes = 1500 |
| 107 | + for it in range(n_episodes): |
| 108 | + s = env.reset() |
| 109 | + episode_reward = 0 |
| 110 | + done = False |
| 111 | + while not done: |
| 112 | + a = epsilon_greedy(model, s) |
| 113 | + s2, r, done, info = env.step(a) |
| 114 | + |
| 115 | + # get the target |
| 116 | + if done: |
| 117 | + target = r |
| 118 | + else: |
| 119 | + values = model.predict_all_actions(s2) |
| 120 | + target = r + GAMMA * np.max(values) |
| 121 | + |
| 122 | + # update the model |
| 123 | + g = model.grad(s, a) |
| 124 | + err = target - model.predict(s, a) |
| 125 | + model.w += ALPHA * err * g |
| 126 | + |
| 127 | + # accumulate reward |
| 128 | + episode_reward += r |
| 129 | + |
| 130 | + # update state |
| 131 | + s = s2 |
| 132 | + |
| 133 | + if (it + 1) % 50 == 0: |
| 134 | + print(f"Episode: {it + 1}, Reward: {episode_reward}") |
| 135 | + |
| 136 | + # early exit |
| 137 | + if it > 20 and np.mean(reward_per_episode[-20:]) == 200: |
| 138 | + print("Early exit") |
| 139 | + break |
| 140 | + |
| 141 | + reward_per_episode.append(episode_reward) |
| 142 | + |
| 143 | + # test trained agent |
| 144 | + test_reward = test_agent(model, env) |
| 145 | + print(f"Average test reward: {test_reward}") |
| 146 | + |
| 147 | + plt.plot(reward_per_episode) |
| 148 | + plt.title("Reward per episode") |
| 149 | + plt.show() |
| 150 | + |
| 151 | + # watch trained agent |
| 152 | + watch_agent(model, env, eps=0) |
| 153 | + |
0 commit comments