Skip to content

Commit 638fe9e

Browse files
committed
merge changes
2 parents d3d1e48 + f6f97af commit 638fe9e

File tree

1 file changed

+7
-2
lines changed

1 file changed

+7
-2
lines changed

recommenders/spark.py

+7-2
Original file line numberDiff line numberDiff line change
@@ -10,9 +10,14 @@
1010
# print(tmp)
1111

1212
from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating
13+
import os
1314

1415
# load in the data
16+
<<<<<<< HEAD
1517
data = sc.textFile("../large_files/movielens-20m-dataset/small_rating.csv")
18+
=======
19+
data = sc.textFile(os.path.expanduser('~') + "/Code/machine_learning_examples/large_files/movielens-20m-dataset/small_rating.csv")
20+
>>>>>>> f6f97af5e368bb1343243049d44f0a12635cfa38
1621

1722
# filter out header
1823
header = data.first() #extract header
@@ -42,12 +47,12 @@
4247
# joins on first item: (user_id, movie_id)
4348
# each row of result is: ((user_id, movie_id), (rating, prediction))
4449
mse = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).mean()
45-
print("train mse:", mse)
50+
print("train mse: %s" % mse)
4651

4752

4853
# test
4954
x = test.map(lambda p: (p[0], p[1]))
5055
p = model.predictAll(x).map(lambda r: ((r[0], r[1]), r[2]))
5156
ratesAndPreds = test.map(lambda r: ((r[0], r[1]), r[2])).join(p)
5257
mse = ratesAndPreds.map(lambda r: (r[1][0] - r[1][1])**2).mean()
53-
print("test mse:", mse)
58+
print("test mse: %s" % mse)

0 commit comments

Comments
 (0)