-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
128 lines (96 loc) · 3.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import glob
import os
from dataset import ChestXrayDataset
from torchvision import transforms
from torch.utils.data import DataLoader
from net import CNNnet
from datetime import datetime
from torch.utils.tensorboard import SummaryWriter
device = torch.device("cuda" if torch.cuda.is_available() else "mps")
folder_path = "./chest_xray/"
train_filenames = glob.glob(os.path.join(folder_path + "train/", "*/*"))
val_filenames = glob.glob(os.path.join(folder_path + "test/", "*/*"))
transform = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
def target_transform(label):
if label == "NORMAL":
return 0
elif label == "PNEUMONIA":
return 1
else:
raise ValueError("Unknown label")
def train_one_epoch(epoch_index, tb_writer):
running_loss = 0.0
last_loss = 0.0
model.train()
for i, data in enumerate(training_loader):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.view(-1, 1).float().to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = bce(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / len(training_loader)
tb_writer.add_scalar("Loss/train", avg_loss, epoch_index + 1)
return last_loss
BATCH_SIZE = 512
train_data = ChestXrayDataset(
train_filenames, transform=transform, target_transform=target_transform
)
val_data = ChestXrayDataset(
val_filenames, transform=transform, target_transform=target_transform
)
training_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)
validation_loader = DataLoader(val_data, batch_size=BATCH_SIZE, shuffle=True)
model = CNNnet().to(device)
bce = torch.nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
writer = SummaryWriter("runs/chest_xray_trainer_{}".format(timestamp))
epoch_number = 0
best_vloss = 1_000_000.0
no_improvement_count = 0
EPOCHS = 100
PATIENCE = 10
for epoch in range(EPOCHS):
print("EPOCH {}:".format(epoch_number + 1))
model.train(True)
avg_loss = train_one_epoch(epoch_number, writer)
running_vloss = 0.0
model.eval()
with torch.no_grad():
for i, vdata in enumerate(validation_loader):
vinputs, vlabels = vdata
vinputs = vinputs.to(device)
vlabels = vlabels.view(-1, 1).float().to(device)
voutputs = model(vinputs)
vloss = bce(voutputs, vlabels)
running_vloss += vloss
avg_vloss = running_vloss / (i + 1)
print("LOSS train {} valid {}".format(avg_loss, avg_vloss))
writer.add_scalars(
"Training vs. Validation Loss",
{"Training": avg_loss, "Validation": avg_vloss},
epoch_number + 1,
)
writer.flush()
if avg_vloss < best_vloss:
best_vloss = avg_vloss
model_path = "model_{}_{}.pth".format(timestamp, epoch_number)
torch.save(model.state_dict(), model_path)
no_improvement_count = 0
else:
no_improvement_count += 1
if no_improvement_count >= PATIENCE:
print(f"Early stopping after {PATIENCE} epochs without improvement.")
break
epoch_number += 1