-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathconvert_active_to_coco.py
176 lines (146 loc) · 6.82 KB
/
convert_active_to_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
'''
Split `Active` dataset into training and test sets.
Move this file to `{$movenet}/data/active` and run it.
Author: Min LI
TODO: Check whether keypoint mapping from MPII to COCO is correct.
'''
from PIL import Image
import os
import os.path as osp
import numpy as np
import json
import shutil
import random
db_type = 'train' # train, test
train_percentage = 0.9
annot_path = "annotations/active.json"
train_save_path = "annotations/active_train.json"
val_save_path = "annotations/active_val.json"
if not osp.isdir('train'):
os.makedirs('train')
if not osp.isdir('val'):
os.makedirs('val')
print("Loading Acitve dataset...")
with open(annot_path) as json_file:
active = json.load(json_file)
'''
MPII: 0 - r ankle, 1 - r knee, 2 - r hip, 3 - l hip, 4 - l knee, 5 - l ankle, 6 - pelvis, 7 - thorax, 8 - upper neck, 9 - head top, 10 - r wrist, 11 - r elbow, 12 - r shoulder, 13 - l shoulder, 14 - l elbow, 15 - l wrist
COCO_PERSON_KEYPOINT_NAMES = [
'nose', 0
'left_eye', 1
'right_eye', 2
'left_ear', 3
'right_ear', 4
'left_shoulder', 5
'right_shoulder', 6
'left_elbow', 7
'right_elbow', 8
'left_wrist', 9
'right_wrist', 10
'left_hip', 11
'right_hip', 12
'left_knee', 13
'right_knee', 14
'left_ankle', 15
'right_ankle' 16
]
'''
joint_mapping = {'0': 16, '1': 14, '2': 12, '3': 11, '4': 13, '5': 15, '6': -1, '7': -1, '8': -1, '9': 0, '10': 10, '11': 8, '12': 6, '13': 5, '14': 7, '15': 9}
joint_num = 17
img_num = len(active)
random_index = list(range(img_num))
random.shuffle(random_index)
train_index = random_index[:int(img_num * train_percentage) + 1]
val_index = random_index[int(img_num * train_percentage) + 1:]
print("image size: ", img_num)
print("train size: ", int(img_num * train_percentage))
print("val size: ", img_num -int(img_num * train_percentage))
aid = 0
coco_train = {'images': [], 'categories': [], 'annotations': []}
for img_id in train_index:
filename = 'images/' + str(active[img_id]['image'])#filename
filename_target = 'train/' + str(active[img_id]['image'])
shutil.copy(filename, filename_target)
img = Image.open(osp.join('.', filename))
w,h = img.size
img_dict = {'id': aid, 'file_name': str(active[img_id]['image']), 'width': w, 'height': h}
coco_train['images'].append(img_dict)
bbox = np.zeros((4)) # xmin, ymin, w, h
kps = np.zeros((joint_num, 3)) # xcoord, ycoord, vis
ori_kps = []
#kps
for jid in range(16):
if (joint_mapping[str(jid)] == -1): continue
kps[joint_mapping[str(jid)]][0] = active[img_id]["joints"][jid][0]
kps[joint_mapping[str(jid)]][1] = active[img_id]["joints"][jid][1]
kps[joint_mapping[str(jid)]][2] = active[img_id]["joint_vis"][jid] + 1
ori_kps.append([active[img_id]["joints"][jid][0],active[img_id]["joints"][jid][1]])
kps[1:5] = np.zeros((4, 3))
ori_kps = np.asarray(ori_kps)
#bbox extract from annotated kps
xmin = np.min(ori_kps[:,0])
ymin = np.min(ori_kps[:,1])
xmax = np.max(ori_kps[:,0])
ymax = np.max(ori_kps[:,1])
width = xmax - xmin - 1
height = ymax - ymin - 1
# corrupted bounding box
if width <= 0 or height <= 0:
continue
# 20% extend
else:
bbox[0] = ((xmin + xmax)/2. - width/2*1.2) if(((xmin + xmax)/2. - width/2*1.2)>0) else 0
bbox[1] = ((ymin + ymax)/2. - height/2*1.2) if(((ymin + ymax)/2. - height/2*1.2)>0) else 0
bbox[2] = width*1.2 if ((bbox[0]+width*1.2)<w) else (w-bbox[0])
bbox[3] = height*1.2 if ((bbox[1]+height*1.2)<w) else (h-bbox[1])
person_dict = {'id': aid, 'image_id': aid, 'category_id': 1, 'area': bbox[2]*bbox[3],'bbox':bbox.tolist(), 'iscrowd': 0, 'keypoints': kps.reshape(-1).tolist(), 'num_keypoints':int(np.sum(kps[:,2]==2))}
coco_train['annotations'].append(person_dict)
aid += 1
category = {"supercategory": "person","id": 1,"name": "person","keypoints": ["nose","left_eye","right_eye","left_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_elbow","left_wrist","right_wrist","left_hip","right_hip","left_knee","right_knee","left_ankle","right_ankle"],"skeleton": [[16,14],[14,12],[17,15],[15,13],[12,13],[6,12],[7,13],[6,7],[6,8],[7,9],[8,10],[9,11],[2,3],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7]]}
coco_train['categories'] = [category]
with open(train_save_path, 'w') as f:
json.dump(coco_train, f)
coco_val = {'images': [], 'categories': [], 'annotations': []}
for img_id in val_index:
filename = 'images/' + str(active[img_id]['image'])#filename
filename_target = 'val/' + str(active[img_id]['image'])
shutil.copy(filename, filename_target)
img = Image.open(osp.join('.', filename))
w,h = img.size
img_dict = {'id': aid, 'file_name': str(active[img_id]['image']), 'width': w, 'height': h}
coco_val['images'].append(img_dict)
bbox = np.zeros((4)) # xmin, ymin, w, h
kps = np.zeros((joint_num, 3)) # xcoord, ycoord, vis
ori_kps = []
#kps
for jid in range(16):
if (joint_mapping[str(jid)] == -1): continue
kps[joint_mapping[str(jid)]][0] = active[img_id]["joints"][jid][0]
kps[joint_mapping[str(jid)]][1] = active[img_id]["joints"][jid][1]
kps[joint_mapping[str(jid)]][2] = active[img_id]["joint_vis"][jid] + 1
ori_kps.append([active[img_id]["joints"][jid][0],active[img_id]["joints"][jid][1]])
kps[1:5] = np.zeros((4, 3))
#bbox extract from annotated kps
ori_kps = np.asarray(ori_kps)
xmin = np.min(ori_kps[:,0])
ymin = np.min(ori_kps[:,1])
xmax = np.max(ori_kps[:,0])
ymax = np.max(ori_kps[:,1])
width = xmax - xmin - 1
height = ymax - ymin - 1
# corrupted bounding box
if width <= 0 or height <= 0:
continue
# 20% extend
else:
bbox[0] = ((xmin + xmax)/2. - width/2*1.2) if(((xmin + xmax)/2. - width/2*1.2)>0) else 0
bbox[1] = ((ymin + ymax)/2. - height/2*1.2) if(((ymin + ymax)/2. - height/2*1.2)>0) else 0
bbox[2] = width*1.2 if ((bbox[0]+width*1.2)<w) else (w-bbox[0])
bbox[3] = height*1.2 if ((bbox[1]+height*1.2)<w) else (h-bbox[1])
person_dict = {'id': aid, 'image_id': aid, 'category_id': 1, 'area': bbox[2]*bbox[3],'bbox':bbox.tolist(), 'iscrowd': 0, 'keypoints': kps.reshape(-1).tolist(), 'num_keypoints':int(np.sum(kps[:,2]==2))}
coco_val['annotations'].append(person_dict)
aid += 1
category = {"supercategory": "person","id": 1,"name": "person","keypoints": ["nose","left_eye","right_eye","left_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_elbow","left_wrist","right_wrist","left_hip","right_hip","left_knee","right_knee","left_ankle","right_ankle"],"skeleton": [[16,14],[14,12],[17,15],[15,13],[12,13],[6,12],[7,13],[6,7],[6,8],[7,9],[8,10],[9,11],[2,3],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7]]}
coco_val['categories'] = [category]
with open(val_save_path, 'w') as f:
json.dump(coco_val, f)