-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatching.py
41 lines (29 loc) · 1.44 KB
/
batching.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from transformers import BertTokenizerFast, DataCollatorForLanguageModeling
import torch
from torch.utils.data import DataLoader, Dataset
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
# we will need to customize this
def get_data_loader(sentences, batch_size=32, max_length=128):
"""
Tokenizes sentences and returns a DataLoader for them.
:param sentences: List of text sentences.
:param batch_size: Size of each batch.
:param max_length: Maximum length of the tokenized output.
:return: DataLoader with tokenized and appropriately masked batches.
"""
print("Initializing tokenizer...")
encoded_inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt", max_length=max_length)
class SimpleDataset(Dataset):
def __init__(self, encodings):
self.encodings = encodings
def __getitem__(self, idx):
return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
def __len__(self):
return len(self.encodings.input_ids)
print('Initializing dataset...')
dataset = SimpleDataset(encoded_inputs)
print('Initializing datacollator...')
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.15)
print('Initializing dataloader...')
dataloader = DataLoader(dataset, shuffle=True, batch_size=batch_size, collate_fn=data_collator)
return dataloader