forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
224 lines (174 loc) · 10.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import tensorflow as tf
import glob
import matplotlib.pyplot as plt
import os
import time
import datetime
import argparse
from tensorflow.keras import layers
print(tf.__version__)
from utils import run_from_ipython, generate_latent_points, generate_and_save_images, save_gif, generate_varying_outputs
parser = argparse.ArgumentParser()
ipython = run_from_ipython()
if ipython:
from IPython import display
parser.add_argument('--dataset', type = str, default = "MNIST", help = "Name of dataset: MNIST (default) or CIFAR10")
parser.add_argument('--epochs', type = int, default = 0, help = "No of epochs: default 50 for MNIST, 150 for CIFAR10")
parser.add_argument('--noise_dim', type = int, default = 0, help = "No of latent Noise variables, default 62 for MNIST, 64 for CIFAR10")
parser.add_argument('--continuous_weight', type = float, default = 0.0, help = "Weight given to continuous Latent codes in loss calculation, default 0.5 for MNIST, 1 for CIFAR10")
parser.add_argument('--batch_size', type = int, default = 256, help = "Batch size, default 256")
parser.add_argument('--outdir', type = str, default = '.', help = "Directory in which to store data, don't put '/' at the end!")
args = parser.parse_args()
if args.dataset == "MNIST":
from model_MNIST import make_generator_model, make_discriminator_model
(train_images, _), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
if args.epochs == 0 :
args.epochs = 50
if args.noise_dim == 0 :
args.noise_dim = 62
if args.continuous_weight == 0.0:
args.continuous_weight = 0.5
else :
from model_CIFAR10 import make_generator_model, make_discriminator_model
(train_images, _), (_, _) = tf.keras.datasets.cifar10.load_data()
train_images = train_images.reshape(train_images.shape[0], 32, 32, 3).astype('float32')
if args.epochs == 0 :
args.epochs = 150
if args.noise_dim == 0 :
args.noise_dim = 64
if args.continuous_weight == 0.0:
args.continuous_weight = 1
if not os.path.exists(f"{args.outdir}/assets/{args.dataset}"):
os.makedirs(f"{args.outdir}/assets/{args.dataset}")
#normalizing the images
train_images = (train_images - 127.5) / 127.5
##### DEFINE GLOBAL VARIABLES AND OBJECTS ######
BUFFER_SIZE = 600000
BATCH_SIZE = args.batch_size
epochs = args.epochs
noise_dim = args.noise_dim
continuous_dim = 2
categorical_dim = 10
num_examples_to_generate = 100
continuous_weight = args.continuous_weight
seed, _, _ = generate_latent_points(num_examples_to_generate, noise_dim, categorical_dim, continuous_dim) # A constant sample of latent points so as to create images
# Define Generator
generator = make_generator_model(noise_dim)
print("\nGenerator : ")
print(generator.summary())
discriminator = make_discriminator_model()
print("\nDiscriminator : ")
print(discriminator.summary())
print("Dataset : ", args.dataset)
###########################################
# Converting data to tf Dataset
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
# defining losses
binary_cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
categorical_cross_entropy = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
#defining optimizers
generator_optimizer = tf.keras.optimizers.Adam(1e-3, beta_1=0.5 )
discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
#defining storage points for checkpoints
checkpoint_dir = f'{args.outdir}/training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer, discriminator_optimizer =discriminator_optimizer,generator=generator,discriminator=discriminator)
#defining loss metrics for Plotting purposes with tensorboard
discriminator_loss_metric = tf.keras.metrics.Mean('discriminator_loss', dtype=tf.float32)
discriminator_real_accuracy_metric = tf.keras.metrics.BinaryCrossentropy('discriminator_real_accuracy', from_logits=True)
discriminator_fake_accuracy_metric = tf.keras.metrics.BinaryCrossentropy('discriminator_fake_accuracy', from_logits=True)
generator_loss_metric = tf.keras.metrics.Mean('generator_loss', dtype=tf.float32)
categorical_loss_metric = tf.keras.metrics.Mean('categorical_loss', dtype=tf.float32)
continuous_loss_metric = tf.keras.metrics.Mean('continuous_loss', dtype=tf.float32)
# Save points for metrics
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
base = f"{args.outdir}/logs/gradientTape/{current_time}"
disc_log_dir = base + '/discriminator'
gen_log_dir = base + '/generator'
cont_log_dir = base + '/cont'
cat_log_dir = base + '/cat'
# Create summary writers
disc_summary_writer = tf.summary.create_file_writer(disc_log_dir)
gen_summary_writer = tf.summary.create_file_writer(gen_log_dir)
cat_summary_writer = tf.summary.create_file_writer(cont_log_dir)
cont_summary_writer = tf.summary.create_file_writer(cat_log_dir)
##################################
# A train step to train the model on a minibatch
def train_step(images):
noise, categorical_input, continuous_input = generate_latent_points(BATCH_SIZE, noise_dim, categorical_dim, continuous_dim)
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
disc_loss, real_loss, fake_loss, categorical_loss, continuous_loss = discriminator_loss(real_output, fake_output, categorical_input, continuous_input)
gen_loss = generator_loss(fake_output, categorical_loss, continuous_loss)
discriminator_loss_metric(disc_loss)
generator_loss_metric(gen_loss)
discriminator_real_accuracy_metric(tf.ones_like(real_output[:,0]), real_output[:,0])
discriminator_fake_accuracy_metric(tf.zeros_like(fake_output[:,0]), fake_output[:,0])
categorical_loss_metric(categorical_loss)
continuous_loss_metric(continuous_loss)
print(f"Losses - Disc : [{disc_loss}], Gen : [{gen_loss}], \n categorical loss : {categorical_loss}, continuous loss : {continuous_loss}")
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
####################################
def discriminator_loss(real_output, fake_output, categorical_input, continuous_input):
real_loss = binary_cross_entropy(tf.ones_like(real_output[:,0]), real_output[:,0])
fake_loss = binary_cross_entropy(tf.zeros_like(fake_output[:,0]), fake_output[:,0])
categorical_output = fake_output[:,1:1 + categorical_dim]
continuous_output = fake_output[:, 1+categorical_dim : ]
categorical_loss = categorical_cross_entropy(categorical_input, categorical_output)
continuous_loss = tf.reduce_mean((2*(continuous_output - continuous_input))**2)
total_loss = real_loss + fake_loss + continuous_weight*continuous_loss + categorical_loss
return total_loss, real_loss, fake_loss, categorical_loss, continuous_loss
#####################################
def generator_loss(fake_output, categorical_loss, continuous_loss):
gen_loss = binary_cross_entropy(tf.ones_like(fake_output[:,0]), fake_output[:,0])
return gen_loss + continuous_weight*continuous_loss + categorical_loss
#####################################
def main():
# begin the training loop
for epoch in range(epochs):
start = time.time()
print(f"EPOCH : {epoch+1}")
for image_batch in train_dataset:
train_step(image_batch)
# Produce images for the GIF
if ipython:
display.clear_output(wait=True)
generate_and_save_images(generator, epoch + 1, seed, outdir = args.outdir, dataset = args.dataset)
# Save the model every 15 epochs
if (epoch + 1) % 15 == 0:
checkpoint.save(file_prefix = checkpoint_prefix)
# writing to summary writers
with disc_summary_writer.as_default():
tf.summary.scalar('Loss', discriminator_loss_metric.result(), step = epoch)
tf.summary.scalar('Real Accuracy', discriminator_real_accuracy_metric.result(), step = epoch)
tf.summary.scalar('Fake Accuracy', discriminator_fake_accuracy_metric.result(), step = epoch)
with cat_summary_writer.as_default():
tf.summary.scalar('Loss', categorical_loss_metric.result(), step = epoch)
with cont_summary_writer.as_default():
tf.summary.scalar('Loss', continuous_loss_metric.result(), step = epoch)
with gen_summary_writer.as_default():
tf.summary.scalar('Loss', generator_loss_metric.result(), step = epoch)
print('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
print(f'Epoch results: Discriminator Loss: {discriminator_loss_metric.result()}, Real Accuracy: {discriminator_real_accuracy_metric.result()}, Fake Accuracy: {discriminator_fake_accuracy_metric.result()}')
print(f' Generator Loss: {generator_loss_metric.result()}')
discriminator_loss_metric.reset_states()
discriminator_real_accuracy_metric.reset_states()
discriminator_fake_accuracy_metric.reset_states()
generator_loss_metric.reset_states()
categorical_loss_metric.reset_states()
continuous_loss_metric.reset_states()
# Generate after the final epoch
if ipython:
display.clear_output(wait=True)
generate_and_save_images(generator, epochs, seed, outdir = args.outdir, dataset = args.dataset)
save_gif(args.outdir, args.dataset)
# For producing outputs with constant noise and varying continuous and categorical latent codes
generate_varying_outputs(generator, num_examples_to_generate, noise_dim, args.dataset, args.outdir)
if __name__ == '__main__':
main()