forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
137 lines (103 loc) · 4.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import argparse
import numpy as np
import matplotlib.pyplot as plt
import os
from models import make_discriminator, make_generator
from utils import plot_images, make_gif
from dataloader import dataloader
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=40)
parser.add_argument('--dataset', type=str, default="mnist")
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--outdir', type=str, required=True,default='./cgan/')
parser.add_argument('--learning_rate', type=float, default=0.0002)
parser.add_argument('--latent_size', type=int, default=100)
args = parser.parse_args()
return args
args = parse_args()
epochs = args.epochs
dataset = args.dataset
batch_size = args.batch_size
outdir = os.path.join(args.outdir, dataset)
lr = args.learning_rate
latent_size = args.latent_size
if not os.path.exists(outdir):
os.makedirs(outdir)
def train(dataset, latent_size, batch_size, epochs, lr, outdir, decay = 6e-8):
x_train, y_train, image_size, num_labels = dataloader(dataset)
model_name = "cgan_" + dataset
input_shape = (image_size, image_size, 1)
label_shape = (num_labels, )
##################################################################
inputs = layers.Input(shape=input_shape, name='discriminator_input')
labels = layers.Input(shape=label_shape, name='class_labels')
discriminator = make_discriminator(inputs, labels, image_size)
optimizer = keras.optimizers.Adam(lr=lr, decay=decay)
discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
discriminator.summary()
##################################################################
input_shape = (latent_size, )
inputs = layers.Input(shape=input_shape, name='z_input')
generator = make_generator(inputs, labels, image_size)
generator.summary()
optimizer = keras.optimizers.Adam(lr=lr*0.5, decay=decay*0.5)
discriminator.trainable = False
outputs = discriminator([generator([inputs, labels]), labels])
gan = keras.models.Model([inputs, labels],
outputs,
name=model_name)
gan.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
gan.summary()
##################################################################
noise_input = np.random.uniform(-1.0, 1.0, size=[100, latent_size])
noise_class = np.eye(num_labels)[np.arange(0, 100) % num_labels]
train_size = x_train.shape[0]
batch_count = int(train_size / batch_size)
G_Losses = []
D_Losses = []
print(model_name,
"Labels for generated images: ",
np.argmax(noise_class, axis=1))
for e in range(1, epochs+1):
for b_c in range(batch_count):
random = np.random.randint(0, train_size, size=batch_size)
real_images = x_train[random]
real_labels = y_train[random]
noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_size])
fake_labels = np.eye(num_labels)[np.random.choice(num_labels, batch_size)]
fake_images = generator.predict([noise, fake_labels])
x = np.concatenate((real_images, fake_images))
labels = np.concatenate((real_labels, fake_labels))
y = np.ones([2 * batch_size, 1])
y[batch_size:, :] = 0.0
d_loss, d_acc = discriminator.train_on_batch([x, labels], y)
log = "[discriminator loss: %f || acc: %f || ]" % (d_loss, d_acc)
noise = np.random.uniform(-1.0, 1.0, size=[batch_size, latent_size])
fake_labels = np.eye(num_labels)[np.random.choice(num_labels, batch_size)]
y = np.ones([batch_size, 1])
gan_loss, gan_acc = gan.train_on_batch([noise, fake_labels], y)
log = "%s [gan loss: %f || acc: %f]" % (log, gan_loss, gan_acc)
print("[epoch: %d] %s" % (e, log))
G_Losses.append(gan_loss)
D_Losses.append(d_loss)
plot_images(generator,
noise_input=noise_input,
noise_class=noise_class,
outdir = outdir,
show=True,
epoch=e,)
plt.plot(G_Losses, label='Generator')
plt.plot(D_Losses, label='Discriminator')
plt.legend()
plt.savefig(outdir + "plot.png")
plt.show()
make_gif(outdir, model_name, epochs)
train(dataset = dataset, latent_size = latent_size, batch_size = batch_size, epochs = epochs, lr = lr, outdir = outdir, decay = 6e-8)