forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
64 lines (46 loc) · 1.82 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
def make_generator(inputs, labels, image_size):
image_resize = image_size // 4
kernel_size = 5
layer_filters = [128, 64, 32, 1]
x = layers.concatenate([inputs, labels], axis=1)
x = layers.Dense(image_resize * image_resize * layer_filters[0])(x)
x = layers.Reshape((image_resize, image_resize, layer_filters[0]))(x)
for filters in layer_filters:
if filters > layer_filters[-2]:
strides = 2
else:
strides = 1
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2DTranspose(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same')(x)
x = layers.Activation('sigmoid')(x)
generator = keras.models.Model([inputs, labels], x, name='generator')
return generator
def make_discriminator(inputs, labels, image_size):
kernel_size = 5
layer_filters = [32, 64, 128, 256]
x = inputs
y = layers.Dense(image_size * image_size)(labels)
y = layers.Reshape((image_size, image_size, 1))(y)
x = layers.concatenate([x, y])
for filters in layer_filters:
if filters == layer_filters[-1]:
strides = 1
else:
strides = 2
x = layers.LeakyReLU(alpha=0.2)(x)
x = layers.Conv2D(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same')(x)
x = layers.Flatten()(x)
x = layers.Dense(1)(x)
x = layers.Activation('sigmoid')(x)
discriminator = keras.models.Model([inputs, labels], x, name='discriminator')
return discriminator