forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn_model.py
50 lines (41 loc) · 1.6 KB
/
cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
import torch.nn as nn
from torch.autograd import Variable
import torchvision.models as models
class Resnet18(nn.Module):
def __init__(self, embedding_dim):
super(Resnet18, self).__init__()
self.resnet18 = models.resnet18(pretrained=True)
in_features = self.resnet18.fc.in_features
modules = list(self.resnet18.children())[:-1] #leaving last softmax
self.resnet18 = nn.Sequential(*modules)
self.linear = nn.Linear(in_features, embedding_dim)
self.init_weights()
def init_weights(self):
self.linear.weight.data.normal_(0.0,0.02)
self.linear.bias.data.fill_(0)
def forward(self, images):
embed = self.resnet18(images)
embed = Variable(embed)
embed = self.linear(embed.view(embed.size(0), -1))
return embed
class Inception(nn.Module):
def __init__(self, embedding_dim):
super(Inception, self).__init__()
self.inception = models.inception_v3(pretrained=True)
in_features = self.inception.fc.in_features
self.linear = nn.Linear(in_features, embedding_dim)
self.inception.fc = self.linear
self.init_weights()
def init_weights(self):
self.linear.weight.data.normal_(0.0, 0.02)
self.linear.bias.data.fill_(0)
def forward(self, images):
embed = self.inception(images)
return embed
def get_CNN(architecture, embedding_dim):
if architecture == 'resnet18':
cnn = Resnet18(embedding_dim = embedding_dim)
elif architecture == 'inception':
cnn = Inception(embedding_dim = embedding_dim)
return cnn