forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
59 lines (52 loc) · 2.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import torch
import pickle
import argparse
from PIL import Image
#------------------------
import torch
import torch.nn as nn
from cnn_model import get_CNN
from decoder import RNN
from vocab import Vocabulary
from torchvision import transforms
from dataloader import DataLoader, shuffle_data
#--------------------------
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('filename',type=str,help="Image filename.")
parser.add_argument('epoch',type=int,help="Number of epochs model has been trained for.")
parser.add_argument('model_dir',type=str,help="Saved model directory, which has name of format: model + current_datetime.")
parser.add_argument('-model',type=str,default='resnet18',help="Encoder CNN architecture.Default: 'resnet18', other option is 'inception' (Inception_v3).")
parser.add_argument('-test_dir',type=str,default='test',help="Test dataset directory name, default: 'test'.")
args = parser.parse_args()
print(args)
model_name = args.model
model_dir = args.model_dir
f = open(os.path.join(model_dir, 'vocab.pkl'), 'rb')
vocab = pickle.load(f)
transform = transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))
])
image = Image.open(os.path.join(args.test_dir,args.filename))
#image.show()
image = transform(image)
vocab_size = vocab.index
embedding_dim = 512
hidden_dim = 512
cnn = get_CNN(architecture= model_name, embedding_dim=embedding_dim)
lstm = RNN(embedding_dim=embedding_dim,hidden_dim=hidden_dim,vocab_size=vocab_size)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
cnn.to(device)
lstm.to(device)
image = image.unsqueeze(0)
image = image.to(device)
cnn_filename = 'epoch_' + str(args.epoch) + '_cnn.pkl'
lstm_filename = 'epoch_' + str(args.epoch) + '_lstm.pkl'
cnn.load_state_dict(torch.load(os.path.join(model_dir, cnn_filename)))
lstm.load_state_dict(torch.load(os.path.join(model_dir, lstm_filename)))
cnn_output = cnn(image)
ids_list = lstm.greedy(cnn_output)
print(vocab.get_sentence(ids_list))