forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
227 lines (177 loc) · 6.98 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch.nn as nn
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class CA(nn.Module):
def __init__(self,indim,outdim):
super().__init__()
self.outdim=outdim
self.fc1=nn.Linear(indim,outdim*2)
self.relu=nn.ReLU()
def forward(self,x):
outdim=self.outdim
out=self.relu(self.fc1(x))
mean=out[:,:outdim]
logvar=out[:,outdim:]
epsilon=torch.randn(x.size()[0],outdim).to(device)
std= logvar.mul(0.5).exp_()
output=mean+epsilon*std
return output,mean,logvar
class G1(nn.Module):
def __init__(self,indim,zdim,imsize,inchnls):
super().__init__()
self.ca=CA(1024,indim)
self.indim=indim
self.zdim=zdim
self.imsize=imsize
self.inchnls=(indim+zdim)*8
self.fc1=nn.Linear(indim+zdim,(indim+zdim)*4*4*8)
self.bn=nn.BatchNorm1d((indim+zdim)*4*4*8)
self.relu=nn.ReLU()
self.up1=nn.UpsamplingNearest2d(scale_factor=2)
self.conv1=nn.Conv2d(inchnls,inchnls//2,stride=1,padding=1,kernel_size=3)
self.bn1=nn.BatchNorm2d(inchnls//2)
self.up2=nn.UpsamplingNearest2d(scale_factor=2)
self.conv2=nn.Conv2d(inchnls//2,inchnls//4,stride=1,padding=1,kernel_size=3)
self.bn2=nn.BatchNorm2d(inchnls//4)
self.up3=nn.UpsamplingNearest2d(scale_factor=2)
self.conv3=nn.Conv2d(inchnls//4,inchnls//8,stride=1,padding=1,kernel_size=3)
self.bn3=nn.BatchNorm2d(inchnls//8)
self.up4=nn.UpsamplingNearest2d(scale_factor=2)
self.conv4=nn.Conv2d(inchnls//8,3,stride=1,padding=1,kernel_size=3)
self.bn4=nn.BatchNorm2d(3)
self.tanh=nn.Tanh()
def forward(self,x,z):
out,mean,logvar=self.ca(x)
out=torch.cat((out,z),1)
out=self.relu(self.bn(self.fc1(out)))
out=out.view(-1,(self.indim+self.zdim)*8,4,4)
out=self.relu(self.bn1(self.conv1(self.up1(out))))
out=self.relu(self.bn2(self.conv2(self.up2(out))))
out=self.relu(self.bn3(self.conv3(self.up3(out))))
out=self.tanh(self.bn4(self.conv4(self.up4(out))))
return out,mean,logvar
class EmbedComp(nn.Module):
def __init__(self,insize,outsize,md):
super().__init__()
self.fc1=nn.Linear(insize,outsize)
self.outsize=outsize
self.md=md
def forward(self,x):
out=self.fc1(x)
out=out.view(-1,self.outsize,1,1)
out=out.repeat(1,1,self.md,self.md)
return out
class D1(nn.Module):
def __init__(self,imsize,dim,emdim):
super().__init__()
self.conv1=nn.Conv2d(3,dim//8,kernel_size=4,stride=2,padding=1)
self.lrelu=nn.LeakyReLU(0.2)
self.conv2=nn.Conv2d(dim//8,dim//4,kernel_size=4,stride=2,padding=1)
self.bn2=nn.BatchNorm2d(dim//4)
self.conv3=nn.Conv2d(dim//4,dim//2,kernel_size=4,stride=2,padding=1)
self.bn3=nn.BatchNorm2d(dim//2)
self.conv4=nn.Conv2d(dim//2,dim,kernel_size=4,stride=2,padding=1)
self.bn4=nn.BatchNorm2d(dim)
self.embedc=EmbedComp(1024,emdim,4).to(device)
self.conv5=nn.Conv2d(dim+emdim,dim,kernel_size=1)
self.bn5=nn.BatchNorm2d(dim)
self.conv6=nn.Conv2d(dim,1,kernel_size=4,stride=4)
self.sigmoid=nn.Sigmoid()
def forward(self,img,embed):
out=self.lrelu(self.conv1(img))
out=self.lrelu(self.bn2(self.conv2(out)))
out=self.lrelu(self.bn3(self.conv3(out)))
out=self.lrelu(self.bn4(self.conv4(out)))
em=self.embedc(embed)
out=torch.cat((out,em),1)
out=self.lrelu(self.bn5(self.conv5(out)))
out=self.sigmoid(self.conv6(out) )
out=out.view(-1)
return out
class ResBlock(nn.Module):
def __init__(self,inchnls):
super().__init__()
self.conv1=nn.Conv2d(inchnls,inchnls,kernel_size=3,stride=1,padding=1)
self.bn1=nn.BatchNorm2d(inchnls)
self.relu=nn.ReLU()
self.conv2=nn.Conv2d(inchnls,inchnls,kernel_size=3,stride=1,padding=1)
self.bn2=nn.BatchNorm2d(inchnls)
def forward(self,x):
x1=x
out=self.relu(self.bn1(self.conv1(x)))
out=(self.bn2(self.conv2(out)))
out=self.relu(out+x1)
return out
class G2(nn.Module):
def __init__(self,imsize,chnls,outsize,inchnls,embed_dim):
super().__init__()
self.ca=CA(1024,embed_dim)
self.embed_dim=embed_dim
self.conv1=nn.Conv2d(3,chnls//4,kernel_size=4,stride=2,padding=1)
self.bn1=nn.BatchNorm2d(chnls//4)
self.lrelu=nn.LeakyReLU(0.2)
self.conv2=nn.Conv2d(chnls//4,chnls,kernel_size=4,stride=2,padding=1)
self.bn2=nn.BatchNorm2d(chnls)
self.res1=ResBlock(chnls+embed_dim)
self.res2=ResBlock(chnls+embed_dim)
self.relu=nn.ReLU()
self.up1=nn.UpsamplingNearest2d(scale_factor=2)
self.conva=nn.Conv2d(inchnls,inchnls//2,stride=1,padding=1,kernel_size=3)
self.bna=nn.BatchNorm2d(inchnls//2)
self.up2=nn.UpsamplingNearest2d(scale_factor=2)
self.convb=nn.Conv2d(inchnls//2,inchnls//4,stride=1,padding=1,kernel_size=3)
self.bnb=nn.BatchNorm2d(inchnls//4)
self.up3=nn.UpsamplingNearest2d(scale_factor=2)
self.convc=nn.Conv2d(inchnls//4,inchnls//8,stride=1,padding=1,kernel_size=3)
self.bnc=nn.BatchNorm2d(inchnls//8)
self.up4=nn.UpsamplingNearest2d(scale_factor=2)
self.convd=nn.Conv2d(inchnls//8,3,stride=1,padding=1,kernel_size=3)
self.bnd=nn.BatchNorm2d(3)
self.tanh=nn.Tanh()
def forward(self,x,img):
out,mean,logvar=self.ca(x)
out=out.view(-1,self.embed_dim,1,1)
out=out.repeat(1,1,16,16)
img=self.lrelu(self.bn1(self.conv1(img)))
img=self.lrelu(self.bn2(self.conv2(img)))
out=torch.cat((img,out),1)
out=self.res1(out)
out=self.res2(out)
out=self.relu(self.bna(self.conva(self.up1(out))))
out=self.relu(self.bnb(self.convb(self.up2(out))))
out=self.relu(self.bnc(self.convc(self.up3(out))))
out=self.tanh(self.bnd(self.convd(self.up4(out))))
return out,mean,logvar
class D2(nn.Module):
def __init__(self,imsize,dim,emdim):
super().__init__()
self.conv1=nn.Conv2d(3,dim//32,kernel_size=4,stride=2,padding=1)
self.lrelu=nn.LeakyReLU(0.2)
self.conv2=nn.Conv2d(dim//32,dim//16,kernel_size=4,stride=2,padding=1)
self.bn2=nn.BatchNorm2d(dim//16)
self.conv3=nn.Conv2d(dim//16,dim//8,kernel_size=4,stride=2,padding=1)
self.bn3=nn.BatchNorm2d(dim//8)
self.conv4=nn.Conv2d(dim//8,dim//4,kernel_size=4,stride=2,padding=1)
self.bn4=nn.BatchNorm2d(dim//4)
self.conv5=nn.Conv2d(dim//4,dim//2,kernel_size=4,stride=2,padding=1)
self.bn5=nn.BatchNorm2d(dim//2)
self.conv6=nn.Conv2d(dim//2,dim,kernel_size=4,stride=2,padding=1)
self.bn6=nn.BatchNorm2d(dim)
self.embedc=EmbedComp(1024,emdim,4).to(device)
self.conv7=nn.Conv2d(dim+emdim,dim,kernel_size=1)
self.bn7=nn.BatchNorm2d(dim)
self.conv8=nn.Conv2d(dim,1,kernel_size=4,stride=4)
self.sigmoid=nn.Sigmoid()
def forward(self,img,embed):
out=self.lrelu(self.conv1(img))
out=self.lrelu(self.bn2(self.conv2(out)))
out=self.lrelu(self.bn3(self.conv3(out)))
out=self.lrelu(self.bn4(self.conv4(out)))
out=self.lrelu(self.bn5(self.conv5(out)))
out=self.lrelu(self.bn6(self.conv6(out)))
em=self.embedc(embed)
out=torch.cat((out,em),1)
out=self.lrelu(self.bn7(self.conv7(out)))
out=self.sigmoid(self.conv8(out) )
out=out.view(-1)
return out