forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
54 lines (45 loc) · 1.63 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from random import randint, shuffle
from random import random as rand
from pytorch_pretrained_bert.tokenization import BertTokenizer
import torch
import torch.nn as nn
import random
import math
import os
def seek_random_offset(f, back_margin=2000):
""" seek random offset of file pointer """
f.seek(0, 2)
max_offset = f.tell() - back_margin
f.seek(randint(0, max_offset), 0)
f.readline()
def truncate_tokens_pair(tokens_a, tokens_b, max_len):
while True:
if len(tokens_a) + len(tokens_b) <= max_len:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def get_random_word(vocab_words):
i = random.randint(0,30000)
return list(vocab_words)[i]
def gelu(x):
"Implementation of the gelu activation function by Hugging Face"
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class LayerNorm(nn.Module):
def __init__(self, dim, variance_epsilon=1e-12):
super().__init__()
self.gamma = nn.Parameter(torch.ones(dim))
self.beta = nn.Parameter(torch.zeros(dim))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.gamma * x + self.beta
def save_model(i,model,dir):
""" save current model """
torch.save(model.allenc.state_dict(),os.path.join(dir, 'model_epoch_'+str(i)+'.pt'))
def load(model_file,model):
if model_file:
model.load_state_dict(torch.load(model_file))